You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 36 Next »

Data extracted in May 2021

Note to the reader: This general fiche summarises all the environmental and climate impacts of INTERCROPPING found in a systematic review of 25 synthesis research papers1. These papers were selected, from an initial number of 111 yielded by a systematic literature search strategy, according to the inclusion criteria reported in section 4.   

As each synthesis research paper involves a number of primary research papers ranging from 11 to 180, the assessment of impacts relies on a large number of results obtained in field experiments (carried out in situations close to real farming environment ), and sometimes in lab experiments or from model simulations. 

1. DESCRIPTION OF THE FARMING PRACTICE 

Description  

Intercropping is a farming method that involves cultivating two or more crop species (i.e., crop mixture cropping) or genotypes (i.e., cultivar mixture cropping) in the same area and coexisting for a time so that they interact agronomically 2 3. 

Key descriptors 

  • This review includes different types of intercropping 2 4: 
  • Mixed cropping: sowing multiple crop species or cultivars in the same field at the same time, in a mixture with a given seeding ratio but random spatial arrangement. 
  • Row intercropping: sowing multiple crop species in the same field at the same time in alternate rows. 
  • Strip intercropping: sowing two (or more) crop species in the same field at the same time in multi-row strips wide enough to allow independent cultivation. 
  • Relay cropping: intercropping of two crop species in which the second species is under-sown in the first at a later point in the growing season. 
  • This review includes intercropping applied to cash crops, fodder (one study) and cover crops 5 (one study). 
  • This review does not include alley cropping, i.e., the cultivation of food, forage or specialty crops between rows of trees, and dual-purpose cropping, i.e. the cultivation of two or more crops used for grazing by livestock and for grain. These two practices are assessed in separate sets of fiches.  

2. DESCRIPTION OF THE IMPACTS OF THE FARMING PRACTICE ON CLIMATE AND THE ENVIRONMENT 

We reviewed the impacts of intercropping compared to monoculture, i.e., the cultivation of one crop or cultivar. 

The tables below show the number of synthesis papers reporting positive, negative or no effect, based on the statistical comparison of the intervention and the control. In addition, we include, if any, the number of systematic reviews reporting relevant results but without statistical test of the effects (uncertain). The numbers between parentheses indicate the number of synthesis papers with a quality score of at least 50%. Details on quality criteria can be found in the methodology section of this WIKI. 

Out of the 25 synthesis papers selected, 18 reported studies conducted in Europe. None of the synthesis studies exploring the impacts of intercropping on Carbon sequestration, Soil erosion, Soil nutrients and Water retention included experiments conducted in Europe. All synthesis papers have a quality score higher than 50%. Some synthesis papers reported more than one impact. 

Table 1. Impacts of intercropping compared to monoculture 

 

All studies 

 

Only studies including EU 

Impact 

Intervention 

Positive 

Negative 

No effect 

Uncertain 

 

Positive 

Negative 

No effect 

Uncertain 

Increase Carbon sequestration 

Crop mixture  

1 (1) 

0 

0 

0 

 

0 

0 

0 

0 

Increase Plant nutrient uptake 

Crop mixture  

5 (5) 

0 

1 (1) 

0 

 

4 (4) 

0 

0 

0 

Decrease Pests and diseases 

Crop mixture  

5 (5) 

0 

1 (1) 

0 

 

1 (1) 

0 

0 

0 

Cultivar mixture  

3 (3) 

0 

1 (1) 

0 

 

3 (3) 

0 

1 (1) 

0 

Decrease Soil erosion 

Crop mixture  

2 (2) 

0 

1 (1) 

0 

 

0 

0 

0 

0 

Increase Soil nutrients 

Crop mixture  

1 (1) 

0 

1 (1) 

0 

 

0 

0 

0 

0 

Increase Soil water retention 

Crop mixture  

1 (1) 

1 (1) 

0 

0 

 

0 

0 

0 

0 

Increase Crop yield * 

Crop mixture  

14 (14) 

2 (2) ** 

2 (2) 

0 

 

9 (9) 

1(1) ** 

1 (1) 

0 

Cultivar mixture  

3 (3) 

0 

1 (1) 

0 

 

3 (3) 

0 

1 (1) 

0 

* Nine out of 19 studies measured crop yield as land equivalent ratio (LER), i.e., the ratio of the area under sole cropping to the area under intercropping needed to give equal amounts of yield at the same management level. It is generally calculated as the sum of the fractions of the intercropped yields divided by the sole-crop yields. 

** These studies considered crop yield from only the main crop, instead of all crops included in the intercropping. 

3. DESCRIPTION OF THE KEY FACTORS INFLUENCING THE SIZE OF THE EFFECT 

Only the factors explicitly studied in the reviewed synthesis papers with a significant effect are reported below. Details regarding the factors can be found in the summaries of the meta-analyses. 

Impact 

Factors 

Increase Plant nutrient uptake 

Crop/cultivar combinations (ref. 5, 2, 6), Sowing time (ref. 7, 2), Geographical area (ref. 7), Soil texture (ref. 14), Previous crop (ref. 14), Growing degree days (Climate) (ref. 14), Fertiliser application (ref. 2, 6), Method used to quantify Nitrogen fixation (ref. 6) 

Decrease Pests and diseases 

Crop/cultivar combinations (ref. 1, 23, 20), Crop type (ref. 1), Sowing density (ref. 23), Disease severity (ref. 23), Type of herbivore pest (ref. 11), Season (ref. 8), Pathogen species (ref. 8) 

Increase Soil water retention 

Soil depth (ref. 3) 

Increase Crop yield 

Crop type (ref. 10, 3, 13, 25, 18, 9), Disease severity (ref. 10, 13), Trait heterogeneity (ref. 10), Fertiliser application (ref. 16, 13, 5, 4, 18, 19, 2, 9), Pesticide use (ref. 16), Tillage (ref. 16), Crop/cultivar combinations (ref. 16, 13, 12, 5, 4, 20, 25, 19, 17, 2, 21, 9), Herbicide use (ref. 16), Soil organic matter (ref. 13, 7), Soil pH (ref. 13), Latitude (ref. 13, 25), Crop spatial arrangement (ref. 5, 19, 17), Sowing time (ref. 18, 7), Crop density (ref. 18, 19), Geographical area (ref. 7, 19), Soil texture (ref. 14, 9), Previous crop (ref. 14), Growing degree days (ref. 14), Climate (ref. 9), Temporal treatment establishment (ref. 9), Row distance (ref. 9) 

4. SYSTEMATIC REVIEW SEARCH STRATEGY 

Keywords 

TS=("grazing*" OR "grassland*" OR "pasture*" OR "rangeland")) AND TS=(("meta-analy*" OR "systematic* review*" OR "evidence map" OR "global synthesis" OR "evidence synthesis" OR "research synthesis") 

or 

TITLE-ABS-KEY: ( "grazing*"  OR  "grassland*"  OR  "pasture*"  OR "rangeland")  AND  TITLE-ABS-KEY ( "meta-analy*"  OR  "systematic* review*"  OR  "evidence map"  OR  "global synthesis"  OR  "evidence synthesis"  OR  "research synthesis") 

Search dates 

No time restrictions 

Databases 

Web of Science and Scopus, run in September 2021 

Selection criteria 

The main criteria that led to the exclusion of a synthesis paper were when the paper: 1) did not deal with terrestrial grasslands or the effects on grasslands could not be disentangled from other land uses; 2) did not deal with grazing management; 3) was either a non-systematic review, a non-quantitative systematic review, or a meta-regression without mean effect sizes; 4) was not written in English. Due to the high number of potentially valid synthesis papers, we applied additional exclusion criteria: 5) the paper did not include studies conducted in Europe; 6) the paper only reported impacts on grassland or animal production, but any environmental impacts. Synthesis papers that passed the relevance criteria were subject to critical appraisal carried out on a paper-by-paper basis. 

The search returned 1022 synthesis papers potentially relevant for the practice object of our fiche. From the 1022 potentially relevant synthesis papers, 661 were excluded after reading the title and abstract, and 330 after reading the full text according to the above-mentioned criteria. Finally, 31 synthesis papers were selected for grazing. 

5. LIST OF SYNTHESIS PAPERS INCLUDED IN THE REVIEW  

Ref. Num 

Authors 

Year 

Title 

Reference 

DOI 

1 

Gibson, AK; Nguyen, AE 

2021 

Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems 

Evol. Lett. 5, 16-32 

10.1002/evl3.206 

2 

Tang, XY; Zhang, CC; Yu, Y; Shen, JB; van der Werf, W; Zhang, FS 

2021 

Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis 

Plant Soil 460, 89–104 

10.1007/s11104-020-04768-x 

3 

Daryanto, S; Fu, BJ; Zhao, WW; Wang, S; Jacinthe, PA; Wang, LX 

2020 

Ecosystem service provision of grain legume and cereal intercropping in Africa 

Agric. Syst. 178, 102761 

10.1016/j.agsy.2019.102761 

4 

Li, CJ; Hoffland, E; Kuyper, TW; Yu, Y; Li, HG; Zhang, CC; Zhang, FS; van der Werf, W 

2020 

Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning 

Eur J Agron. 113, 125987 

10.1016/j.eja.2019.125987 

5 

Li, CJ; Hoffland, E; Kuyper, TW; Yu, Y; Zhang, CC; Li, HG; Zhang, FS; van der Werf, W 

2020 

Syndromes of production in intercropping impact yield gains 

Nat. Plants 6, 653–660 

10.1038/s41477-020-0680-9 

6 

Rodriguez, C; Carlsson, G; Englund, JE; Flohr, A; Pelzer, E; Jeuffroy, MH; Makowski, D; Jensen, ES 

2020 

Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis 

Eur. J. Agron. 118, 126077 

10.1016/j.eja.2020.126077 

7 

Xu, Z; Li, CJ; Zhang, CC; Yu, Y; van der Werf, W; Zhang, FS 

2020 

Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis 

Field Crops Res. 246, 107661 

10.1016/j.fcr.2019.107661 

8 

Zhang, CC; Dong, Y; Tang, L; Zheng, Y; Makowski, D; Yu, Y; Zhang, FS; van der Werf, W 

2019 

Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis 

Eur. J. Plant Pathol. 154, 931–942 

10.1007/s10658-019-01711-4 

9 

Ashworth, AJ; Toler, HD; Allen, FL; Auge, RM 

2018 

Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time 

PloS One 13, e0200274. 

10.1371/journal.pone.0200274 

10 

Borg, J; Kiaer, LP; Lecarpentier, C; Goldringer, I; Gauffreteau, A; Saint-Jean, S; Barot, S; Enjalbert, J 

2018 

Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps 

Field Crops Res. 221, 298-313 

10.1016/j.fcr.2017.09.006 

11 

Koricheva, J; Hayes, D 

2018 

The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta-analysis 

Funct. Col. 32, 1704-1717 

10.1111/1365-2435.13062 

12 

Martin-Guay, MO; Paquette, A; Dupras, J; Rivest, D 

2018 

The new Green Revolution: Sustainable intensification of agriculture by intercropping 

Sci. Total Environ. 615, 767–772 

10.1016/j.scitotenv.2017.10.024 

13 

Reiss, ER; Drinkwater, LE 

2018 

Cultivar mixtures: a meta-analysis of the effect of intraspecific diversity on crop yield 

Ecol. Appl. 28, 62–77 

10.1002/eap.1629 

14 

Thapa, R; Poffenbarger, H; Tully, KL; Ackroyd, VJ; Kramer, M; Mirsky, SB 

2018 

Biomass production and nitrogen accumulation by hairy vetch-cereal rye mixtures: a meta-analysis 

J. Agron. 91, 25–33 

10.2134/agronj2017.09.0544 

15 

Xiong, M; Sun, R; Chen, L; 

2018 

Effects of soil conservation techniques on water erosion control: A global analysis 

Sci. Total Environ. 645 753–760 

10.1016/j.scitotenv.2018.07.124 

16 

Himmelstein, J; Ares, A; Gallagher, D; Myers, J 

2017 

A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects 

Int. J. Sustain. Agric. Res. 15, 1-10 

10.1080/14735903.2016.1242332 

17 

Raseduzzaman, M; Jensen, ES 

2017 

Does intercropping enhance yield stability in arable crop production ? A meta-analysis 

Eur. J. Agron. 91, 25–33 

10.1016/j.eja.2017.09.009 

18 

Yu, Y; Stomph, TJ; Makowski, D; Zhang, LZ; van der Werf, W 

2016 

A meta-analysis of relative crop yields in cereal/legume mixtures suggests options for management 

Field Crops Res. 198, 269–279 

10.1016/j.fcr.2016.08.001 

19 

Yu, Y; Stomph, TJ; Makowski, D; van der Werf, W 

2015 

Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis 

Field Crops Res. 184, 133–144 

10.1016/j.fcr.2015.09.010 

20 

Iverson, AL; Marin, LE; Ennis, KK; Gonthier, DJ; Connor-Barrie, BT; Remfert, JL; Cardinale, BJ; Perfecto, I 

2014 

Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis 

J. Appl. Ecol. 51, 1593–1602 

10.1111/1365-2664.12334 

21 

Pelzer, E; Hombert, N; Jeuffroy, MH; Makowski, D 

2014 

Meta-analysis of the effect of nitrogen fertilization on annual cereal-legume intercrop production 

Agron. J. 106, 1775–1786 

10.2134/agronj13.0590 

22 

Slattery, RA; Ainsworth, EA; Ort, DR 

2013 

A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap 

J. Exp. Bot. 12, 3723–3733 

10.1093/jxb/ert207 

23 

Huang, C; Sun, ZY; Wang, HG; Luo, Y; Ma, ZH 

2012 

Effects of wheat cultivar mixtures on stripe rust: A meta-analysis on field trials 

Crop Prot. 33, 52-58 

10.1016/j.cropro.2011.11.020 

24 

Letourneau, DK; Armbrecht, I; Rivera, BS; Lerma, JM; Carmona, EJ; Daza, MC; Escobar, S; Galindo, V; Gutierrez, C; Lopez, SD; Mejia, JL; Rangel, AMA; Rangel, JH; Rivera, L; Saavedra, CA; Torres, AM; Trujillo, AR 

2011 

Does plant diversity benefit agroecosystems? A synthetic review 

Ecol. Appl. 21, 9-21. 

10.1890/09-2026.1 

25 

Kiaer, LP; Skovgaard, IM; Ostergard, H 

2009 

Grain yield increase in cereal variety mixtures: A meta-analysis of field trials 

Field Crops Res. 114, 361–373 

10.1016/j.fcr.2009.09.006 

  • No labels