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1 The purpose of the classification pilot  

The main target of this pilot study is to analyze the usability of Geospatial Aid Application (GSAA) data in 
the context of crop type classification on pilot sites, and to assess land cover / land use nomenclatures 
regarding their fitness for an interoperable exchange of georeferenced crop information .  

 The pilot study was implemented along the following principles: 2 pilot sites were implemented 
with the use of open available GSAA data of y2020 

 semantic harmonization, thematic generalization and geometrical generalization of GSAA data  

 testing the performance as reference data (training/test) to derive a seamless crop map: 

-  2 versions of grouping crops: detailed crop types / main crop groups   

-  3 versions of geometry: polygon / random points / inner centroid  

-  3 types of supervised classification method 

 comparing the result of different geometric representation of training data using the 
misclassification matrix and the accuracy values related to crop types 

 methods were defined respecting possibilities of automatization,  

 LPIS was also used for masking eligible area. 

Since the seamless geometry and the crop type of agricultural parcels is available in the Integrated 
Administration and Control System (IACS) as the result of multi annual GSAAs, this information can be used 
for modeling, analyzing and planning land use.  On the other hand, the high sensitivity of GSAA data prevents 
member states to share original geometries real time due to privacy or economic considerations. The legal 
aspects of data security level is still an on-going debate during the implementation of the pilot. This pilot 
would like to offer alternative solutions to derive geometrically generalized data from GSA, which can be 
suitable for training effectively image classification algorithms.  

Several approaches exist to detect the annual crops based on semi-automatic or automatic classification of 
multi-temporal satellite images. To assess the potential applications of a crop map based on GSAA parcel 
data, a classification exercise has been run on two pilot study areas. Different semantic, thematic and 
geometric generalization approaches have been tested in combination with classification algorithms. 

The case with IACS-GSAA data is, however, specific: high amounts of data (i.e. declared parcels) are available. 
In several Member States (MS) over 90% of the Arable Land (AL) is declared. However, the quality of these 
declaration is only partially assured by the On The-Spot Checks (OTSC), which amounts to a 5-8% of the total 
area. Therefore, the quality of the GSAA dataset and approaches based on ML coupled with large training 
data sets have to be explored to establish an operational methodology.  

Another important aspect to investigate is the possibility to generate crop maps using GSAA parcels data. 
Currently, the EU MSs are developing detailed methodologies for detecting land management actions and 
the growth of crops by using satellite images for Checks by Monitoring (CbM). It is foreseen that the result of 
the “marker approach” will lead to a more in-depth validation of GSAA parcels against remote sensing data. 
The “marker approach” is a systematic monitoring of crop development and agricultural practices of a parcel, 
based on the combination of image signal time series and predefined values and limits describing the land 
phenomenon.  Therefore, the quality of data to train models for crop mapping will highly increase. On the 
other hand, crop type maps, are not a direct output of the marker-based approach, they are outside the 
scope of the CbM. The methodology of CbM does not require generating a seamless land use thematic map 
for the entire country.  

There are several directions of spatial data modelling, where a seamless cropmap brings fundamental values, 
such as modelling ecosystem services contributing to biodiversity, ensuring food security, analyzing land use 
change scenarios, handling competitive sectors via policy etc. Further to this, generating crop maps using 
GSAA parcels data would contribute to the new policy context that targets at creating comprehensive and 
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comparable data throughout the EU for Performance-based Monitoring and Evaluation Framework (PMEF) 
in agri-environment-climate policy. Monitoring can be used in a variety of contexts. It is known that a land 
use map containing detailed categories of permanent grasslands, permanent crops and arable land featuring 
individual crop types could become the spatial standardized baseline for calculating several indicators 
tracking the change of biodiversity, climate change, land management trends etc.,  and running prediction 
models. Planning of interventions might even require sub-parcel categorization integrating several other 
aspects, leading to challenges of data interoperability.  

By generating crop maps using GSAA parcels data this pilot study is planned to investigate along the following 
principles:  

 semantic harmonization of open and available GSAA datasets of different countries; 
 thematic generalization of crop types of GSAA data via aggregating individual crop types into group 

types following a hierarchical classification nomenclature;  
 geometric generalization of spatial representations of the training samples derived from GSAA data, 

meaning that simplified geometries will be tested to represent the training data derived from the 
original GSAA geometries; 

 use of well-established algorithm of supervised crop classification  to automatize the parametrization 
of the model, to define a method sensitive for regional and seasonal differences, and to contribute 
to a harmonized crop classification system; 

 comparison of the different geometric representation of training data using the misclassification 
matrix and the thematic accuracy values related to crop types.  

The methodology developed in this study is based on the following assumptions, which is based on prior 
experiences:  

 

1. Based on studying the free available GSAA datasets, and the willingness of member states to 
participate, 2 pilot sites had been selected. On the 1st pilot site of Germany – North Rhine Westphalia 
(NRW), a pixel-based classification method was preferred to object-based models, because a 
summarized decision for an object (i.e. crop parcel) might hide the differences of classification to 
evaluate the result visually. On the 2nd pilot site (Austria) the results of an object-based machine 
learning model were tested.  

2. The difference between the classification of the training data based on the 3 geometric 
generalization (whole parcel’s polygon, number of random points proportional to parcel’s area,  
parcel’s inner centroid)  is assessed by using 2 types of popular image classification method: 
maximum likelihood supervised classification model, and the Random Forest (RF) supervised learning 
algorithm.  

3. The overall quality of GSAA datasets used in this pilot study was not evaluated, but was accepted as 
a reliable input based on prior knowledge and on the OTSC sample. This was confirmed by a visual 
inspection comparing the parcels’ geometry to the image time series. Correctness of the geometry 
topology (no overlaps, no invalid geometries) was tested.  

4. In this study the image classification is based on optical Sentinel 2 images only. Better results can be 
obtained if the approach is extended with the combined use of radar and optical S1+S2 image for 
crop detection.  

5. The pilot sites are small enough to be regarded as a single agricultural region where the crops have 
relatively the same vegetation profiles and can be evaluated with the use of the same image time 
series. Independently from this, the chosen method is targeting to be capable to deal with regional 
differences.  

6. The minimum parcel size to participate in training/test data was set to 2000 m2.   
7. The classification was run for agricultural area masking it with the  arable land theme of the LPIS. This 

step excludes the misclassification effects sometimes caused by areas of forest, natural habitats and 
household gardening. This  method might not work for all MSs, due to the limitations of LPIS data on 
non-declared but maintained land.  
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2 Selecting the area of the pilot 

2.1 Method of pilot site selection  

The two basic conditions of selecting a pilot site were 1) the availability of data and 2) the willingness of the 
MS administration to join the pilot. In the next step, test areas of approximately of 60Km X 60 Km were 
selected based on the following criteria:  

Criterion Analysis and results 

Open availability of the 

GSAA vector data for 
year 2020 including not 
only the main land 
cover classes 
(AL/PG/PC/NAEA) but 
also the type of crop 
itself.  

GSAA data of several member states available on INSPIRE portal was 

investigated. Only very few cases were found where not the LCC 
categorization, but the crop type was presented. Even the crop specific data 
of the selected North-Rhone-Westphalia region was delivered directly for this 
project by the PA.  

Open availability of LPIS 
data 

LPIS with the main LCC categories (AL/PG/PC/NAEA) and forest LCC data is 
usually available in INSPIRE.  

Availability of S2 optical 
images for y2020 

Due to the fact that time series of S2 L2A optical images had to be able to 
present the vegetation curve of each crop, areas covered by minimum 8 100% 
cloud-free images were selected. This is an ideal situation with seamless 
image data on the entire test area, what ensures better verification due to the 
homogeneous performance of the classification algorithm. 

Representation of 
several AL crop types 

The area is AL dominant, because the classification of arable crops had been 
in focus.  

Representation of 
different parcel sizes 

A visual analysis was made to select a zone where larger and also smaller 
parcels do appear.  

Quality of GSAA vector 
data 

This factor definitely had a high priority, as the current resources do not allow 

to develop methods for filtering the potentially non-proper parcels of the 
GSAA. In this study such plot area was chosen, where we know from previous 
experiences that the boundary of the declared parcels do quite exactly fits to 
the real location. Before running the classification, inhomogeneous crops 
were filtered by visual versification, and excluded from the training and test 
sample.  

The future implementation of CbM will also decrease the importance of this 
step, because the full monitoring workflow for BPS/SAPS/greening parcels is 
willing to verify the GSAA quality via the markers.  

Two pilot sites have been chosen with similar size, one in Germany, North Rhine-Westphalia (NRW) and a 

second one in Austria. Both areas have relatively small parcels, with high diversity of crops and an 
outstanding general quality of GSAA data.  
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2.2 Analyzing the GSAA / LPIS data available on the INSPIRE portal 

As the 1st step of the pilot, data availability of several member states had been tested. The following links 
had been used for successful data download:  

Country/region   Link  

Netherlands  https://www.pdok.nl/downloads/-/article/basisregistratie-gewaspercelen-brp-  

France   https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-
et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/#_  

Estonia   https://kls.pria.ee/geoserver/inspire_gsaa/wfs?service=WFS&request=GetCapabilities  

Catalunya   https://analisi.transparenciacatalunya.cat/Medi-Rural-Pesca/Mapa-de-cultius-de-Catalunya-amb-
origen-DUN/yh94-j2n9  

Denmark  https://www.geodata-
info.dk/srv/dan/catalog.search;jsessionid=8BE554223A7F4F9A1329DDE37DE83004#/search?resul
tType=details&any=gsaa&fast=index&_content_type=json&from=1&to=20&sortBy=relevance  

Belgium WA  http://geoportail.wallonie.be/catalogue/44b10a46-4025-4020-a943-e8ffd5ccbd21.html  

Belgium FL  https://geoservices.informatievlaanderen.be/overdrachtdiensten/Landbgebrperc/wfs?service=WF
S&version=1.1.0&request=GetCapabilities  

Slovenia  https://inspire-geoportal.ec.europa.eu/proxybrowser/#fq=resourceType%3Adataset&q=gsaa  

Slovakia  https://www.nlcsk.org/arcgis/services/MPRV/LU_LPIS/MapServer/WFSServer?service=WFS&Acce
ptVersions=2.0.0&request=GetCapabilities  
 https://docs.google.com/spreadsheets/d/1ZH0soNQ4uwuUTC9IGpCgbfD9Xy3jS0s6jGO-
AoGv2d8/edit#gid=239495147 
On Portal data.gov.sk  
– LPIS: https://data.gov.sk/dataset/system-identifikacie-polnohospodarskych-pozemkov-lpis 
– GSAA: https://data.gov.sk/dataset/hranice-uzivania 
LPIS description: https://portal.vupop.sk/arcgis/rest/services/LPIS/citlive/MapServer/layers 
GSAA app user guide: https://gsaa.mpsr.sk/2018/help/ziadatel/help.html#trueeditova-popis 

Austria  https://geometadatensuche.inspire.gv.at/metadatensuche/srv/ger/catalog.search;jsessionid=8527
53D3EECB6DC16A207EF5D4B9BAA5#/metadata/c2412b1f-b77d-435a-b76a-d56f4609266e  

Luxembourg  https://data.public.lu/fr/datasets/referentiel-des-parcelles-agricoles-flik/  

https://www.pdok.nl/downloads/-/article/basisregistratie-gewaspercelen-brp-
https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/#_
https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/#_
https://kls.pria.ee/geoserver/inspire_gsaa/wfs?service=WFS&request=GetCapabilities
https://analisi.transparenciacatalunya.cat/Medi-Rural-Pesca/Mapa-de-cultius-de-Catalunya-amb-origen-DUN/yh94-j2n9
https://analisi.transparenciacatalunya.cat/Medi-Rural-Pesca/Mapa-de-cultius-de-Catalunya-amb-origen-DUN/yh94-j2n9
https://www.geodata-info.dk/srv/dan/catalog.search;jsessionid=8BE554223A7F4F9A1329DDE37DE83004#/search?resultType=details&any=gsaa&fast=index&_content_type=json&from=1&to=20&sortBy=relevance
https://www.geodata-info.dk/srv/dan/catalog.search;jsessionid=8BE554223A7F4F9A1329DDE37DE83004#/search?resultType=details&any=gsaa&fast=index&_content_type=json&from=1&to=20&sortBy=relevance
https://www.geodata-info.dk/srv/dan/catalog.search;jsessionid=8BE554223A7F4F9A1329DDE37DE83004#/search?resultType=details&any=gsaa&fast=index&_content_type=json&from=1&to=20&sortBy=relevance
http://geoportail.wallonie.be/catalogue/44b10a46-4025-4020-a943-e8ffd5ccbd21.html
https://geoservices.informatievlaanderen.be/overdrachtdiensten/Landbgebrperc/wfs?service=WFS&version=1.1.0&request=GetCapabilities
https://geoservices.informatievlaanderen.be/overdrachtdiensten/Landbgebrperc/wfs?service=WFS&version=1.1.0&request=GetCapabilities
https://inspire-geoportal.ec.europa.eu/proxybrowser/#fq=resourceType%3Adataset&q=gsaa
https://www.nlcsk.org/arcgis/services/MPRV/LU_LPIS/MapServer/WFSServer?service=WFS&AcceptVersions=2.0.0&request=GetCapabilities
https://www.nlcsk.org/arcgis/services/MPRV/LU_LPIS/MapServer/WFSServer?service=WFS&AcceptVersions=2.0.0&request=GetCapabilities
https://docs.google.com/spreadsheets/d/1ZH0soNQ4uwuUTC9IGpCgbfD9Xy3jS0s6jGO-AoGv2d8/edit#gid=239495147
https://docs.google.com/spreadsheets/d/1ZH0soNQ4uwuUTC9IGpCgbfD9Xy3jS0s6jGO-AoGv2d8/edit#gid=239495147
https://data.gov.sk/dataset/system-identifikacie-polnohospodarskych-pozemkov-lpis
https://data.gov.sk/dataset/hranice-uzivania
https://portal.vupop.sk/arcgis/rest/services/LPIS/citlive/MapServer/layers
https://geometadatensuche.inspire.gv.at/metadatensuche/srv/ger/catalog.search;jsessionid=852753D3EECB6DC16A207EF5D4B9BAA5#/metadata/c2412b1f-b77d-435a-b76a-d56f4609266e
https://geometadatensuche.inspire.gv.at/metadatensuche/srv/ger/catalog.search;jsessionid=852753D3EECB6DC16A207EF5D4B9BAA5#/metadata/c2412b1f-b77d-435a-b76a-d56f4609266e
https://data.public.lu/fr/datasets/referentiel-des-parcelles-agricoles-flik/
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Germany - NRW  https://inspire-
geoportal.ec.europa.eu/download_details.html?view=downloadDetails&resourceId=/INSPIRE-
4fed3eb0-06fa-11ea-8480-525400695e9c_20201221-173502/services/1/PullResults/126401-
126420/datasets/20&expandedSection=metadata 
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/ 
GSAA download can be found here – it do not contains the individual crops, just the crop group and 
a bool field if the parcel is under the crop div. requirement or not.  
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LWK-
TSCHLAG_EPSG25832_Shape.zip 

 
LPIS download can be found here: 
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LFK-
AKTI_EPSG25832_Shape.zip 
and the matching description you can find here:

 

The selection of the pilot sites did not only depend on the availability of GSAA and LPIS data itself, but also 
on the willingness of the local administration to participate in the pilot, on the prior information about the 
quality of the data and on the availability of suitable S2 image time series. North Rhone Westphalia and 
Austria fulfilled all requirements. Slovakia could be the next candidate of a pilot site, due to the possibility 
that they will publish a full GSAA data for y2020 soon.  

Experiences found during analyzing input vector datasets:  

 Searching the data is already a challenge, because there are no fixed INSPIRE key-words attached to 
the different IACS-related datasets. Also, the location of the data in the INSPIRE dictionary is not 
standardized. Metadata is available but the level of data description under “resource abstract“ varies 
a lot, as it is a free text. Under the current rules of publishing the metadata a stricter requirement of 
how to describe LPIS and GSAA data would solve this problem. A guide of detailing the content of the 
free text could be useful. The current stage is, that regarding some member states the description 
do not even contain “LPIS” or “GSAA”, only contains the national name of the system. Further to this, 
meaningful descriptive data of LPIS could be further thematized and that would make easier the use 
of the data. Correct data content description has a strong importance because LPIS and GSAA data 
varies, and the member states often upload generalized content, what could result to the fact that it 
is quite difficult to understand the exact content. An example for what data could be retrieved 
regarding an LPIS upload:  

https://inspire-geoportal.ec.europa.eu/download_details.html?view=downloadDetails&resourceId=/INSPIRE-4fed3eb0-06fa-11ea-8480-525400695e9c_20201221-173502/services/1/PullResults/126401-126420/datasets/20&expandedSection=metadata
https://inspire-geoportal.ec.europa.eu/download_details.html?view=downloadDetails&resourceId=/INSPIRE-4fed3eb0-06fa-11ea-8480-525400695e9c_20201221-173502/services/1/PullResults/126401-126420/datasets/20&expandedSection=metadata
https://inspire-geoportal.ec.europa.eu/download_details.html?view=downloadDetails&resourceId=/INSPIRE-4fed3eb0-06fa-11ea-8480-525400695e9c_20201221-173502/services/1/PullResults/126401-126420/datasets/20&expandedSection=metadata
https://inspire-geoportal.ec.europa.eu/download_details.html?view=downloadDetails&resourceId=/INSPIRE-4fed3eb0-06fa-11ea-8480-525400695e9c_20201221-173502/services/1/PullResults/126401-126420/datasets/20&expandedSection=metadata
https://urldefense.com/v3/__https:/www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/__;!!DOxrgLBm!RQnU_5p-rymNOnmJj3C_racJcKXLCQ4LxDaM8qV1l2zL3Dv40dbxUF6fz4q_fHeA56VuEQ$
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LWK-TSCHLAG_EPSG25832_Shape.zip
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LWK-TSCHLAG_EPSG25832_Shape.zip
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LFK-AKTI_EPSG25832_Shape.zip
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/LFK-AKTI_EPSG25832_Shape.zip
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o Date of validity from-to, in case of rotational update cycles parts with seamless update cycle 
should be uploaded as a single unit.  

o Type of reference parcel 
o Is the data spatially continuous or not?  
o Thematic content of the layer: name and values of attribute filed should be documented 

regarding the following data contents, as an example:  
 SAPS eligible area and non-eligible area,  
 main land cover categories,  
 detailed land cover categories – the list and description of categories would be also 

an essential information, that is why the way of correctly publishing these attributes 
in the registry should also be clarified and communicated towards the data uploader 
users,  

 Permanent grassland (PG) categorization if exists,  
 PG ELP categorization, if exists,  
 PG pro-rata categorization, if exists, 

o Main data source of defining the reference parcel, 
o Rule of minimum mapping unit applied for AL,  
o Rule of minimum mapping unit applied for PG,  

 Rule of minimum mapping unit applied for PC. In several countries not the Paying Agency as direct 
data manager uploads the data to INSPIRE. That is why the descriptive information and the 
generalization of the classes might not be well presented.  

 In general case distinguishing crops is not a requirement for direct payments. However, for certain 
categories of (big) farmers yes, as they have to comply with the crop diversification, or other greening 
requirements. As an experience it is detected, that most of the MSs asks all the farmers to declare a 
detailed crop type for their parcels – also for those, where the payment scheme does not require it.  
On the other hand, the detailed crop type is usually not published in the GSAA data under the 
INSPIRE. The reason can be, that it is not specifically required, and the level of detailing the GSAA 
might lead to additional questions, so to fill up the correct metadata to explain the content is quite 
an investment. In practice most member states choose a simplified solution: uploading the crop 
group categories. These crop group categories are the groups of area-based direct payments of the 
given MS. For image classification purposes grouping of crops from the perspective of similar 
vegetation curves is needed, and it is more likely to derive from the lowest level of category 
breakdown.  

 Crops planted as secondary ones in a vegetation year, called catch crops should be distinguished 
from the same type of crop cultivated as a main vegetation of that year.  

 It would be very important to collect the detailed crop category in GSAA also for those parcels that 
are declared as a collective category: like crops for wildlife, set aside where certain plants are allowed 
to be maintained etc.   

 Although INSPIRE technical guidance (TG) requires that "the title of a single dataset shall refer to the 
claim year, to the Member state and if applicable, to the region"  it is not fully respected by all client, 
and it would be very important to implement correctly the TG. Geometric and semantic consistency 
of LPIS and GSAA should be checked, because it is not documented what version of an annual data is 
uploaded to INSPIRE.  

 

2.3 North Rhine Westphalia (NRW) pilot site 

A pilot site was selected in Germany, North Rhine Westphalia, because the GSAA and LPIS data were available 
on the INSPIRE web page. In addition, the Paying Agency (Landwirtschaftskammer Nordrhein-Westfalen) had 
previously shown an interest in sharing IACS data.  

A cropland dominated area of 42x39 km in North Rhine Westphalia -Germany was selected as 1st pilot site:  
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Image 1.: The NRW pilot site: Open Street map and false color composite of R=NIR, G=SWIR1, B=RED 

The reference parcel type of the region is physical block (PB), with the categorization of  

- A = Arable land,  
- G = Permanent grassland,  
- S = Other land,  
- F = Eligible in the 2nd pillar,  
- K = Permanent Crops 

There are 24 016 PBs on the test site delineating 110 809 ha of eligible area, out of which in y2020 46 449 
crop parcels were declared, meaning that in average there are 1,9 parcels declared in a PB. 97,57 % of the 
eligible area is declared. The area is quite a typical winter cereal/maize dominant crop rotation, with only 
15% of PG and big varieties of crops with relatively small areas. The production of Acre grass varieties for 
energetic purposes is increasing (4 % in y2020) and the asparagus and strawberry production is also typical 
in the area.  

There are 121 types of crops declared on the North Rhine Westphalian pilot site, out of which 13 crops cover 
93 % of the declared area with more than 1% of area share compared to the total declared area. The other 
108 crops are all under 600 ha/crop type and cover 7 % of the area. The average parcel size is quite small: 
2,86 ha for the 12 types of main crops, covering 93% of the area, and 3,05 ha if all parcels are counted in the 
average.  

 
Image 2: Crop types evaluated on the North Rhine Westphalia (Germany) pilot site 
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Image 3: Distribution of parcel’s size on the North Rhine Westphalia (Germany) pilot site 

 

Type of crops with their 

original name in GSAA 
Type of crops EN 

NR of 

parcels 
Area (ha) 

average 

parcel size 

(ha) 

% of sum 

declared 

area 

Winterweichweizen Winter wheat 4912   19 994  4,070 18% 

Grünland (Dauergrünland) Permanenet grassland (PG) 11432   16 328  1,428 15% 

Silomais (als Hauptfutter) Silomaize 4871   16 151  3,316 15% 

Wintergerste Winter barley 4267   16 144  3,784 15% 

Mais (ohne Zucker-/Silomais) Maize (excluding sweetcorn and silo)  3831   13 798  3,602 13% 

Wintertriticale Winter tritcale 2302   8 270  3,593 8% 

Winterroggen Winter rye 1229   3 583  2,915 3% 

Ackergras Ackregrass 1349   2 202  1,632 2% 

Acker-/Puff-/Pferdebohne Ackre and other energetic grass 373   1 624  4,354 2% 

Winterraps Winter rape 310   1 475  4,757 1% 

Spargel Asparagus 180   644  3,579 1% 

Kartoffeln Potato 218   608  2,789 1% 

SUM/AVE  35274 100 822  2,858 93% 

Table 1: Main data of parcels evaluated on the North Rhine Westphalia (Germany) pilot site 

 

2.4 The Austrian pilot site  

As a 2nd pilot site Austria was chosen, because the GSAA data is fully available on open platforms, and the 
Paying Agency (Agrarmarkt Austria - AMA) together with its contractor the EOX IT Services GmbH have a 
proven experience of running ML models for predicting type of crops. The expert team presented an interest 
to investigate into testing how GSAA can support classification methods to derive crop specific thematic maps 
as a potential input for AMS.  

The quality of the GSAA, including the localization of parcel boundaries is outstandingly high in Austria, which 
made the GSAA data suitable to test directly to train ML models, without an extensive a priori investigation 
of GSAA. An area of 30x31 km2 south of the city Linz was selected representing the main variety of crops 
mostly in small parcels:  
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Image 4.: The Austrian pilot site: Open Street map and false color composite of R=NIR, G=SWIR1, B=RED 

 

2.5 Selection of satellite images  

2.5.1 NRW pilot site 

Due to the extent of the study, a time series of 8 optical Sentinel2 images were selected, covering the whole 
crop growing period. Evaluation and selection of the images were done based on visual inspection. The entire 
site has a seamless image composite. This is an ideal situation to test how the different training data can be 
used to classify crops under the condition that  input data and the classification algorithm are unchanged.  

Acquisition  
date 

Type of satellite Preprocessing 
status 

Cloud free 

2020.02.07 s2a BOA – L2A 100% 

2020.03.23 s2b BOA – L2A 100% 

2020.04.17 s2a BOA – L2A 100% 

2020.05.07 s2a BOA – L2A 100% 

2020.06.01 s2b BOA – L2A 100% 

2020.06.26 s2a BOA – L2A 100% 

2020.08.05 s2a BOA – L2A 100% 

2020.09.19 s2b BOA – L2A 100% 

Table 2: Satellite images used on the North Rhine Westphalia (Germany) pilot site 

The visual inspection of the  image stack using one image per month showed that it still did not follow with 
enough details the development of crops with a shorter vegetation periods (like pea). Furthermore, it was 
not sensitive enough to classify crops with catch crop. The recommendation is to use a minimum bi-weekly 
coverage. The over 6 weeks of period in between 2 images were not always suitable to detect each multi 
crop combination on the test site. Data of S2 will ensure the detection of ploughing after harvesting the main 
crop, and this would exactly be enough to increase the accuracy of certain crop types.  

The following bands were used in 20 meters resolution: blue/green/red/red edge1/ red edge 2/ red 
edge3/NIR/SWIR1/SWIR2.  

Number of band 
used 

Sentinel-2 Bands  
in original order 

Central Wavelength (µm) 
Resolution 

(m) 

- Band 1 - Coastal aerosol 0.443 60 
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1 Band 2 - Blue 0.490 10 

2 Band 3 - Green 0.560 10 

3 Band 4 - Red 0.665 10 

4 Band 5 - Vegetation Red Edge1 0.705 20 

5 Band 6 - Vegetation Red Edge2 0.740 20 

6 Band 7 - Vegetation Red Edge3 0.783 20 

7 Band 8 - NIR 0.842 10 

- Band 8A - Vegetation Red Edge 0.865 20 

- Band 9 - Water vapour 0.945 60 

- Band 10 - SWIR - Cirrus 1.375 60 

8 Band 11 – SWIR1 1.610 20 

9 Band 12 – SWIR2 2.190 20 

Table 3: Bands of satellite images used on the North Rhine Westphalia (Germany) pilot site 

 

 
Image 5: An example of the 8 images using R=NIR, G=SWIR1, B=RED false color composite was used for visual 

verification of the processes - North Rhine Westphalia (Germany) pilot site 
 

 

2.5.2 Austrian pilot site 

A series of 11 optical only Sentinel2 images was selected. In the image selection, no focus was laid on 
establishing an equitemporal time series. However, it was of concern to select as many cloud-free images as 
possible within the vegetation period. 

Acquisition  

date 

Type of satellite Preprocessing 

status 

2020.01.09 s2a BOA – L2A 

2020.03.19 s2a BOA – L2A 
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2020.04.05 s2a BOA – L2A 

2020.04.08 s2a BOA – L2A 

2020.05.18 s2a BOA – L2A 

2020.06.27 s2a BOA – L2A 

2020.08.13 s2a BOA – L2A 

2020.09.05 s2a BOA – L2A 

2020.09.15 s2a BOA – L2A 

2020.09.22 s2a BOA – L2A 

Table 4: Satellite images used on the Austrian pilot site 

As in the NRW test site, the atmospheric bands (1, 9, 10) were excluded in the Austrian test site. In contrast 
to the NRW site, also the Band 8A, “Vegetation Red Edge”, was included. 

 

2.6 Analyzing the appearance of different crops on the NRW test site 

Due to the lack of a priori knowledge about the crop management of the given region, quite an effort was 
spent to analyze the appearance of the crops. The reason of this was to understand the similarity and the 
difference among the vegetation curves of each crop type, because this is the fundament of implementing 
the grouping and regrouping of crops.  

To understand and to compare the development of crops an NDVI stack was created, with the following 
parameters:  

NDVI stack - false 

color composite  

Order of 

NDVI values  

Acquisition  

date 

Type of 

satellite 

Band used 

for NDVI 

GSD used for NDVI 

 
1 2020.02.07 s2a B8+B4 10m 

BLUE 2 2020.03.23 s2b B8+B4 10m  
3 2020.04.17 s2a B8+B4 10m  
4 2020.05.07 s2a B8+B4 10m 

RED 5 2020.06.01 s2b B8+B4 10m  
6 2020.06.26 s2a B8+B4 10m 

 
7 2020.08.05 s2a B8+B4 10m 

GREEN 8 2020.09.19 s2b B8+B4 10m 

Table 6. Bands of satellite images used to derive NDVI on the North Rhine Westphalia (Germany) pilot site 
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Image 6. False color composite in y2020 to visualize the NDVI stack where R = NDVI 2020.05.07, G= NDVI 2020.09.19 B = NDVI 

2020.03.23  
 

 
Image 7. The multi temporal NDVI profile (on scale 0-100) of a rapeseed parcel  

 
Image 8. The multi temporal NDVI profile (on scale 0-100) of a silo-maize parcel  

 

There are 3 crops being specific for the NRW region, that is why special attention was taken for analyzing 
their development and appearance on the image time series.  
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Horse-bean, Vicia faba  
(Acker-/Puff-/Pferdebohne)  
In this example there are 2 
parcels with 4 weeks of time 
shift in the crop development. 
It seems that classification had 
some weakness, it performed 
on 83 %, regarding the 
successful performance of the 
training on the cluster image.  
 

 

Image 9. Vicia faba - example1 False color comosite of R=NIR, G=SWIR1, B=RED 
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Image 10. Vicia faba – example2 False color comosite of R=NIR, G=SWIR1, B=RED 

 

Asparagus / Spargel  
is a multi annual crop, where the 
white or black plastic cover also 
determines the reflectance.  

 

 

 

 

Image 11. Asparagus - false color comosite of R=NIR, G=SWIR1, B=RED 
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Acre grass / Ackergras is a multi annual crop  

 

 
Image 12. Acre grass - false color comosite of R=NIR, G=SWIR1, B=RED 

 

2.7 Selection of bands considered to be the most relevant  

2.7.1 NRW pilot site 

There are 72 bands of all 8 the images together, as the following 9 of the S2 bands are stacked: 

blue/green/red/re1/re2/re3/nir/swir1/swir2. A few among the 72 bands bringing significantly important 
information to identify different crops, but there are also bands correlated highly in such a way that they 
contain redundant information. To filter out the most relevant bands Principal Component Analysis (PCA)i 
was implemented.  

The image masked with LPIS eligible area was the input of the PCA. The result is the following:  

Sum of eigen values counted for all 72 bands: 23 893 121 

Sum of eigen values counted for the 18 bands selected as most important:  23 544512 

Ration of information content of the selected 18 bands:  98,5 %  

The 18-band image what is the result of the PCA was the input of the classification. The following false color 
composite represents the most relevant data combination of the transformed bands.  

Principal 
components 

Eigen 
value 

% of 
information False color composite 

1 9 636 429 40,3 
B = meaning that where the blue color is dominant the 1st 
component of signal combinations plays a significant role 

2 4 012 766 16,8 
G = meaning that where the green color is dominant the 2nd 
component of signal combinations plays a significant role, and 
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it is a larger range, such it consists of majority of the spectral 
information 

3 2 240 261 9,4 
R = meaning that where the red color is dominant the 3rd 
component of signal combinations plays a significant role 

 
The following representation of the result was used to decide the band selection:  

 
Image 13. Bands used to derive 1st, 2nd and 3rd principal component 

The first 3 component can be visualized in a false color composite, to check visually how the different type 
of crops are separated.  

     
Image 14. R: PC3, G: PC2, B: PC1    Main crop classes identified (legend is in table 8.) 

 

2.7.2 Austrian pilot site 

The feature space of 110 features was reduced by applying a PCA to components explaining 95% of the 
Variance. For the polygon input data, this resulted in 15 used principal components, in case of the centroid 
and random point input data, 16 principal components were used.  
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3 Preparation of reference data  

3.1 Geometrical preprocessing and separating training and test samples 

The reference data is derived from the IACS -GSAA data of year 2020. The following initial steps of preparation 
were used before applying any kind of generalization. Further generalization of the reference data was 
derived from the output of this geometrical preprocessing. Separation of training and test was implemented 
at this preprocessing phase to ensure that the same training and test parcels are used at each version of the 
process tested, and to ensure that the result is comparable on a way, that it is independent from the test  and 
training separation.  

Steps applied:  

1. Selecting GSAA polygons fully overlapping with the image of the test area.  
2. 50% of training and 50% of test data were separated, with stratified random sampling. Crops were 

used as subsets, assigning a percentage to define the total number of randomly selected features in 
the subset. The percentage value is not applied to the whole layer, but to each crop category. In this 
case the share of crops both in the training and in the test sample represents the same share as it is 
in the entire population. Not all classification algorithms are sensitive to the fact if the training data 
properly represent the same share of a crop as it is in the entire population.  

3. Implementing a negative buffer of the GSAA polygons to exclude from the classification the mixed 
pixels by the boundary of the parcels. As the NRW region is not hilly, buffer do not have to handle 
the possible DTM-derived boundary discrepancies. When defining the size of the buffer the 
parameters of vector to raster transition also should be taken into account. In this study the most 
common solution was used: a valid pixel of the raster is created if >50% of the pixel’s area is 
overlapped by the input vector.   
As a result of buffering parcels all along narrower than 2 times the inner buffer will disappear, and 
parcels where only part of their extension is narrower than 2 X inner buffer will be split. To handle 
these a multipart to single part is implemented, and only those polygons are kept  that have a 
minimum width along the entire extent over 60 meters. This will be a condition later at the step of 
generating simplified representation geometries as an inner point as reference data.  
(3A) – In practice for POLYGON topology of training and test data 10 and 20 m of negative buffers 
were used. 10m was used in case NDVI or stacks of S2 bands having 10 meters of Ground Sampling 
Distance (GSD)  (for B3,4,8, NDVI), while 20 m was used if bands with GSD=20 m participates in the 
classification. Suitability of handling boundary-elongated clean pixels and the quality of crop 
development by the side of parcel margins was validated visually. Drop of NDVI by the side of a parcel 
is strongly determined by the success of the crop management, and the representation of less-
developed crop by parcel margins might lead to the separation to an independent class of parcel 
margins rather than classifying the pixels to the given crop.   
 

 
Image 16. NDVI_stack _8dates_10m 10 m of buffer is appropriate with 2000 m2 of size limit R=Band5, G=Band8, B=Band4  



20 

 

 
Image 17. RED_NIR_SWIR_8dates_20m – 72 ISODATA clusters 20 m of buffer with 2000 m2 of size limit 

(3B) – for polygon input used for deriving random POINTS inside the parcels  30 meters (1,5*GSD) 
of negative buffer is calculated, thus random generator is only working inside this area.  

4. (equal to steps 3A and 3B) Applying geometrical function of multipart to single part, to keep polygons 
over 200 m2 as single units what had been split because of the buffer.  

5. (equal to steps 3A and 3B) Keeping the parcels what are over 2000 m2 regarding their original 
geometrical size.  

 

3.2 Generalization in geometry the training and test datasets used in the pilot site 

To clearly compare (reducing additional factors) how a different type of training and test data works 
regarding its geometrical representation 3 types had been tested:  

1. using as training and test the entire polygon of the crop parcel,  
2. generating points inside the polygon of the crop parcel, called multipoint solution,  
3. generating a single inner center, to represent crop parcel, by creating a point at the "center" of an 

area and adjust the position of the point so that it always falls within the area.  
 
While generating the three versions of reference data, the following solutions were used:  

- all random points will fall into pixels participating in the rasterized training and test data, 
- the parcels are represented both by their entire area and by points and multipoints; 
- 30 meter inner buffer of the GSAA polygons will ensure that all random points will always be located 

inside the rasterized GSAA polygons.  
- in the classification each point is represented by a circle with 10 meter radius, resulting, that the 

spectral value of maximum 9 pixels will be used with no overlap, and the 60 meters used for 
minimum distance among the points ensures to avoid the overlap,  

- training and test separation are stable, split before generating the  two point type of geometrical 
representation.   

Two versions of generalizing GSAA parcels with points were tested: 

1. Maximum 8 or less random multipoints inside the polygon of the crop parcel, with minimum 60 
meters of distance applying a proportional decrease by parcel size. To reach this, the random 
generator must be set to use only one try to locate the point. It means that in average for parcels 
smaller than 3240 m2 the number of points will be proportionally decreased. The function is run in 
QGIS under the menu Vector/Research tools/Random Points Inside Polygons 

'Random_points_in_polygons’  
'MAX_TRIES_PER_POINT' : 1,  

'MIN_DISTANCE' : 60, 

'POINTS_NUMBER' : 8, 
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'SEED' : None } 
2. Single point, as inner centroid of a parcel with a 10 meters buffer, meaning that maximum 9 pixels 

will be represented.  

An example how training reference data is presented:  

   

Image 18. Blue lines are representing the polygons of training data with the 20 m of buffer, black points are the result 
of random point generation, while the red points are the inner centroids of the polygons. The background image is an 

example of a supervised pixel based classification of the 8-multi-temporal stack of RED+NIR+SWIR bands using 
maximum likelihood and 60 clusters 

 

To find the best combination of input data and image processing methods a few test runs were implemented. 
If the inner centroid was used only with the 10 meters buffer around the point, the classification was not 
very satisfactory. To improve the classification result a segmentation was implemented around the single 
points, and that leaded to a surprisingly good solution.  

To test the performance of training and test data in image classification, the following number of features 
had been used on the NRW pilot site:  

Number of features used GSAA polygon 
with Buffer 20 m, 

over 2000 m2 

Random maximum 8 
points 

Inner centroid of the 
parcel 

Training – strat. random 50% 17 030 36 436 17 030  

Test – strat. random 50% 17 073 38 183 17 073 
Derived feature used from 
classification  

Each individual 
pixel of the parcel 

Each individual pixel 
overlapping with a 10 
meters buffer around 

the point 

Each individual pixel of 
the segmented unit 

Table 7: Result of deriving the different representation of training and test data on the NRW test site  
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3.3 Semantic grouping of training and test data on the NRW pilot site 

Based on analyzing the performance of the crop types on the pilot area there were 2 main sets of reference 
data prepared using 2 levels of semantic grouping:  

1. Crop level preparation (CODE-1 in Table 8.): keeping each unique crop individually, only applying 
such groupings, and filtering of minimum amounts what leads to clear distinguishable crop 
categories Only crops with exactly the same phenological presence and identical management 
technology are merged.  

2. Crop group level preparation (CODE-2 in Table 8.): Summarizing the main crop types to larger 
categories commonly used in crop rotation planning and in land management evaluation. This 2nd 
categorization is implemented after the 1st, so the categories defined in step-1 are summarized 
further on.  

From classification perspective the 1st category, to separate 27 crops is targeting a some critical issues, and 
the 2nd level of generalization can always be derived from the 1st output and summarizing the crops with 
highest rate of mixing.  

The classes of the 2 level of generalization:  

Aspects CODE-1 
Preparation of reference data  

of separate Crops 

CODE-2 
Preparation of reference data  

on Crop Group level 
The required 
breakdown 
of output 
classes 

Individual Crop level Crop Group level 

Potential use 
in AEM  

Monitoring and evaluating crop 
diversification on the entire area (not 
only for greening-participants).  
Evaluating trends of changing crop share 
and of regional crop pattern.  

Detecting widely used traditional rotations 
on group level, to define additional 
requirements for AEM.  
Monitoring the change of 
AL/PG/PC/NAEA/Forest share,  
Developing for land use planning scenarios.  

Method of 
grouping 
GSAA crop 
categories 

Assign to a single category crops what 
practically contains the same crop with 
the same management practice and will 
lead to the fact that a separate training 
data will never form an independent class 
during classification. Examples: fallow 
land and fallow land for greening with the 
same maintenance rules are a group; 
different garden vegetables flowers and 
herbs are merged into kitchen garden 
categories.  
Assign to a single category crops with the 
representation of very similar 
development (vegetation curve) on the 
given set of input satellite images. 
Examples: different tree-plantations, 
apple, peach, plum are merged as 
permanent crops (PC).  

Creating crop groups what belongs to the 
same category of land management from the 
point of view of the target level of distinction.  
For example, for monitoring crop rotations 
groups of (1) winter cereals, (2) spring cereals 
(3) maize types (4) clovers and forage crops, 
(5) mixed row crops are necessary. 
Summarizing crops of the same categories 
makes the crop map more accurate, but 
crops with unique spectral profiles and large 
enough area to be well trained (like rape seed 
or Ackergras on NRW site) should not be 
merged, because it could lead to unnecessary 
misclassifications.  
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Semantical 
categories 
remained, 
and color 
legend used 
in the crop 
maps opn 
NRW site  
Number of 
crop 
categories 
remained 

 

 
After preparing the training and test data 
on site NRW for CODE-1 27 crops out of 59 
crops remained. 

 
After preparing the training and test data on 
site NRW for CODE-2 16 out of 27 crops 
remained 

Table 8. Two level of grouping GSAA crops according to the image classification 

The main driving factors of grouping the crops from the perspective of the best classification result is the 
following:  

1. Always merge crops with exactly the same phenological presence and identical management 
technology. These are crops represented on the image time series on a very similar way, with quite 
an identical vegetation curve, that is why their clusters will by definition not be separated. Example: 
crops where seed and grain production is separate in the GSAA, or maize for corn and popcorn etc.  

2. Merge crops with similar phenological presence and having relatively small area to represent (under 
10% of the similar larger area). If these crops with small area are fully excluded, they will be classified 
into the larger class being phonologically the closest.  

3. Annalise the available time series of satellite images, and merge those crops, what have short 
vegetation period, and it likely cannot be covered by the available images. Merging of crops cannot 
be always done by an automatic schema, it is also depending on the actual set of images. Example: 
vegetables with sweet peas, if there is no chance to catch a 3-4 weeks period.  

 

3.4 The preparation of training and test data on the Austrian site  

The preparation of training and test data on the Austrian site was implemented along the same step as for 
the NRW pilot-1 site. Like pilot-1 training the following sets of test data was created:  

- a polygon of declared GSAA parcels,  
- a number of random points proportional to the area of the polygon, with a maximum of 8 points per 

parcel  
- an inner centroid representing the GSAA polygon.  
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Image 19: Blue lines are representing the polygons of training data with the 20 m of buffer, black points are the result 
of random point generation, while the red points are the inner centroids of the polygons.  

The background image is S2 R=1, B=2, G=3 – true color composite on 09-Jan-2020.  

As the result of the geometrical processing to test the performance of training  and test data in image 
classification, the following number of features was used on the NRW pilot site:  

Number of features (parcels) 
used 

GSAA polygon with 
Buffer 20 m, over 

2000 m2 

Random maximum 
8 points 

Inner centroid of 
the parcel 

Training – strat. random 50% 7955 19 237 points 7955 

Test – strat. random 50% 7938 19 510 points 7938 

Table 9. Result of deriving the different representation of training and test data on the Austrian test site  

The method of distribution of random points is the same as with the NRW test site. Since the parcels in the 
Austrian test site are smaller in general, the average number of points within the parcels is considerably 
lower. 

The semantic grouping of training and test data was provided by AMA. With an applied minimum of 100 
training parcels per crop, 14 different crops grouped into 11 groups were considered: 

Crop Name Crop Group  Crop Group (DE) n features  

in training set 

mowing meadow as permanent pasture  

three and more uses mowing meadow Mähwiese 2415 

winter wheat winter wheat Winterweizen 1124 

corn maize corn maize Körnermais 898 

permanent pasture permanent pasture Dauerweide 782 

winter barley Winter barley Wintergerste 576 

silage maize silage maize Silomais 504 

mowing meadow as permt pasture two 

uses mowing meadow Mähwiese 476 

soy beans soy beans Sojabohnen 295 

clover grass fodder grass Futtergräser 197 

sugar-beet Beet Rüben 192 

changing  meadow fodder grass Futtergräser 132 
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green fallow land green fallow land Grünbrache 130 

winter rapeseed winter rapeseed Winterraps 121 

maize corn-crop Mix (CCM) corn maize Körnermais 113 

Table 10. Type of crops and groups used on the Austrian test site  

 

4 Performing supervised crop classification using a well-established 
algorithm with the use of 3 different type of generalized GSAA dataset 

4.1 Classification methods for comparing the performance of the 3 types of generalized 

reference data on the NRW site 

4.1.1 Testing different data preparation methods on the NRW pilot site 

To clarify the final method for testing the performance of the 3 different type of training data, the following 
experiences had been gained:  

1. Principal component analysis: Running a supervised pixel-based classification of the 8-multi-temporal 
stack of RED+NIR+SWIR bands with the use of the polygonal training data of the detailed crops. The 1st 
test was implemented using a maximum likelihood supervised classification and LPIS eligible area 
mask. The results were promising, but the need of integrating more bands was found, to detect further 
sophisticated differences among some crops. This led to implementing the PCA and selecting the most 
important 18 principal components. Due to the fact there was no cloud and haze effect on the site the 
use of NDVI stack was not in focus. The example reflect clearly the advantage of using PCA to derive an 
input spectral signature set for classification.  

  

  



26 

 

  

  

RED-NIR-SWIR spectral bands(image-1) Principal component analysis run on all 8 bands (image-2) 

Image 20. Differences of classifying the same time stack of images, classifying with the same method different 
combination of preprocessed signal values, using the CID1, 27 crops. Legend is presented in Table 8.  

 
2. Segmentation: Classification with the single centroid training data did not show satisfactory result.  

Despite a high number of data, the separation on cluster level of some crops was still not well 
represented. Several clusters describing real crop area (was proven by visual inspection) had no 
training representation by the reference data. The solution was to run a segmentation algorithm, 
which could detect quite efficiently the area around a point still belonging to that homogenic land unit, 
potentially forming an agricultural crop parcel. The result of the segmentation was used as training and 
test data of classifying the entire area. The following examples shows how the segmentation 
performed the detection of the crops considered the area as a homogenous unit:  
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Image 21.  
Blue boundary = GSAA parcel  
Black boundary = segmented units  
Background image: S2- 26 June 2020 R=NIR, 
G=SWIR1, B=RED false color composite 

Blue boundary = GSAA parcel  
Black boundary = segmented units  
Background image: cluster map of maximum 
likelihood on 18 principal components derived from 8 
time series of S2:  
  winter barley = winter gerste 
  maize (corn for grain)= Mais (ohne Zucker- and 
Silomais) 
  silo-maize = Silomais (als Hauptfutter) 
  permanent grassland = grünland 
  fallow land = Bracheflache Vertragsnaturs 
  winter wheat = winterweichweizen 

Image 21. Result of the segmentation around of the inner centroids of the GSAA crop parcels 

 



28 

 

On the NRW site 2 types of classifications had been implemented, with different supervised methods chosen 
– maximum likelihood (MXL) and random forest (RF) - to test the performance of the 3 types of reference 
data. In case of both classification methods 2 training sets, the detailed classes (CODE-1 ) and the summarized 
groups of the crops (CODE-2) were implemented. The result for CODE-2 was derived via summarizing the 
classes of the results generated for the detailed classes (based on CODE-1). The input spectral content of 
both classifications was the 18 principal components of S2 8 time series.  

 

4.1.2 Pixel based maximum likelihood supervised classification 

The following steps had been implemented identically, with the change of the input training data:  

Order Method Maximum likelihood (MXL) based solution in NRW pilot 
1 Selecting input satellite 

images  
Visually selected  a time series of 8 S2 images.  

2 Masking area of 
interest  

LPIS eligible area (AL/PG/PC) was used as a mask before image 
classification with the aim to reduce misclassification with categories 
out of interest 

3 Selecting the most 
relevant spectral 
information  

Selecting the most important 18 Principal Component among the 8 
datesX9 = 72 bands 

4 Defining classes with 
unsupervised 
classification 

Pixel based ISODATA  

5 Creating training 
signatures for the 
supervised classification  

Intersecting the training data and the ISODATA cluster map 

6  Supervised 
classification  

Pixel based maximum likelihood  

7 Reclassifying the final 
classes and creating the 
misclassification 
(confusion) matrix 

Intersecting the training data and assigning the classes to the relevant 
crop types.  
Generating the final recoded class-map.  

8 Accuracy assessment  50% of the reference data population is used as test data, what had 
been processed exactly on the same way as the 50% training.  
Calculated measures are integrated values (Overall accuracy, Kappa) 
and crop separate accuracy measures (user accuracy, producer 
accuracy, Kappa(i) Short (i) Hellden(i)). 

Table 11: Steps of Pixel based maximum likelihood supervised classification 

 
The result is the continuous final recoded cluster map, where the pattern of the permanent pastures along 
the riverside are well visible, built-in areas and forests are excluded.  
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Image 22. Final recoded class-map on the south part of the NRW site, 
 using polygon reference data and the maximum likelihood method 

 
Image 23. As to compare: S2 image of 26 July 2020, using R=NIR, G=SWIR1, B=RED false color composite 

From point 5 the steps are separately done with each type of reference data, using the same settings 
regarding each step, to be able to compare the result. In this chapter the examples and figures are all from 
the classification trained and coded by the detailed classes (see CODE-1) The following examples represent 
the difference of the results and the ratio of misclassifications visualized in the confusion matrix with the use 
of the test data.  

The following examples are presenting the most common misclassifications inside a parcel in the 2 main crop 
categories. The annotation of the 1st polygon-based example (blue polygon) is the declared crop used as 
training data, while the cluster map presents the observed category on pixel level. In the test on the NRW 
site, the result is evaluated on pixel level, and no parcel level decision is derived. This could also be done, but 
only for the polygon-based version of reference data, meaning the respect of the GSAA boundaries on a 
higher state. The confusion matrices calculated for the test data are presented on the figure underneath. 
These were used to analyze the result.  
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Confusion of maize and silo maize is somehow an “acceptable” case, due to the fact the 2 types of crop 
might look exactly the same in several conditions. In some regions, the maize species used for silo differs 
and also the technologies differ, but in several cases the only element makes it different is, if the time 
series detects the early-harvest of the silo-maize. 

As crop separate accuracy measures shows, row crops as a group are distinguishable. Here are the crop 
group values of MXL summarized by CODE2 with the use of polygon training and test data:  

 

The examples of parcels show the misclassifications of each crop type, according to CODE1:  

TRAIN = POLY TRAIN = MAX. 8 POINTS TRAIN = CENTROID +SEGMENTS 
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The mismatch of the winter cereals is also a common issue, but the separation in some context is clearly 
possible. These are the details depending fully on the combination of spectral content, which cannot be 
really followed by visual inspection. In the current example winter wheat triticale and rye are mismatched.  

As crop separate accuracy measures shows, winter cereals are the best distinguishable. Here are the crop 
group values of MXL summarized by CODE2 with the use of polygon training and test data:  

 

The examples of parcels show the misclassifications of each crop type, according to CODE1:  

TRAIN = POLY TRAIN = MAX. 8 POINTS TRAIN = CENTROID +SEGMENTS 

   

   

   

   

 

A typical crop of the region is Acre grass. So typical, that it was classified quite accurately. That is why it 
was a separate class even in the CODE2 level of grouping. Meanwhile other graminoid dominant crops in 
multi-annual cultivation are usually mixed up with permanent grasslands (PG) and with fallow land as well. 
Another aspect is, that when Acre grass is cut, it looks like a cereal stubble, but the grass regenerates quite 
fast.  

As crop separate accuracy measures shows, winter cereals are the best distinguishable. Here are the crop 
group values of MXL summarized by CODE2 with the use of polygon training and test data:  
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The examples of parcels show the misclassifications of each crop type, according to CODE1:  

TRAIN = POLY TRAIN = MAX. 8 POINTS TRAIN = CENTROID +SEGMENTS 

 
  

   

 

 

 

Table 13. Examples of classifications per crops showing the difference among the different training data 

The misclassification matrixes above only present the % of the mixed pixels related to the test data of the 
given crop = user accuracy (presented by columns) but do not fully present how the classified crops are mixing 
with other crops of the test data = producer’s accuracy (presented by rows, but only for 3 crop types).  

As an example, 2 misclassification matrixes are visualizing 2 class-related accuracy values for the polygon 
based maximum likelihood classification regarding all the crops, summarizing into a single group the types 
not have been visualized among the parcels in this chapter. This “all other crop” category contains all the 
crops of CODE1 categorization what are not nominated in the matrix.  
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Threshold metrics are to quantify the classification prediction errors, designed to summarize the fraction, 
ratio, or rate of when a predicted class does not match the expected class in a holdout dataset.  

 

 
Table 14. User and producer accuracy values for the polygon based maximum likelihood classification 

LPIS eligible area was used as a mask before image classification, that is why parcels not being part of the 
y2020 declaration had also been successfully classified:   
 

  
Image 24. Difference in extent of the derived cropmap  
and of the declared parcels in IACS - GSAA 

 

The transparent gray vector layer 
shows the incontinuity of the 
declared parcels, overlapped with 
the crop classification cluster map 
result.  

The yellow parcels are winter 
cereals, the green represents the 
permanent pastures, and the 
maroon is silo-maize.  
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4.1.3 Pixel-based Random Forest supervised classification 

The second version of the test on the NRW site was a classification using pixel-based Random Forest (RF). In 
course of classification RF is sampling the input training data with points. It means, that both the GSAA 
polygons and the segmented units derived around the inner centroid of the crop parcels had been resampled 
by the RF algorithm such as the centroid points. The user cannot parametrize the resampling on a way, that 
balanced representation of a crop could be reached. .  

“Choosing an appropriate metric is challenging generally in applied machine learning, but is particularly 
difficult for imbalanced classification problems. Firstly, because most of the standard metrics that are widely 
used assume a balanced class distribution, and because typically not all classes, and therefore, not all 
prediction errors, are equal for imbalanced classification. 

Decision trees are a simple and powerful predictive modeling technique, but they suffer from high-variance. 
This means that trees can get very different results given different training data. A technique to make decision 
trees more robust and to achieve better performance is called bootstrap aggregation or bagging for short. 
Bagging is an ensemble algorithm that fits multiple models on different subsets of a training dataset, then 
combines the predictions from all models. Random forest is an extension of bagging that also randomly selects 
subsets of features used in each data sample.  

Random forest involves selecting bootstrap samples from the training dataset and fitting a decision tree on 
each. The main difference is that all features (variables or columns) are not used; instead, a small, randomly 
selected subset of features (columns) is chosen for each bootstrap sample. This has the effect of de-
correlating the decision trees (making them more independent), and in turn, improving the ensemble 
prediction. (J. Brownlee, 2020 – source: https://machinelearningmastery.com/bagging-and-random-forest-
for-imbalanced-classification/)” 

The following example represents how strongly imbalanced is the sampling made by the standard setting of 
the RF classifier.  

 
Image 25: Imbalanced sampling of the random forest model: red points are generated by the RF model as training 

signals, inside the entire training data (green crop boundaries). 

https://machinelearningmastery.com/random-forest-ensemble-in-python/
https://machinelearningmastery.com/author/jasonb/
https://machinelearningmastery.com/bagging-and-random-forest-for-imbalanced-classification/
https://machinelearningmastery.com/bagging-and-random-forest-for-imbalanced-classification/
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A simple technique for modifying a decision tree for imbalanced classification is to change the weight that 
each class has when calculating the “impurity” score of a chosen split point. An easy way to overcome class 
imbalance problem when facing the resampling is to take the classes of the instances into account when 
training data are randomly selected from the original dataset. Another approach could be to use random 
independent resampling of the majority classes (crops) to create multiple datasets per crop categories with 
a balanced class distribution.  

In the current study 3 types of reference data were classified with the same settings of the basic RF model, 
that is why the result can be compared. RF was run for the 3 types of reference data, using the same 18 
principal component image and identical settings regarding each step, to be able to compare the result. The 
steps of implementation were the following:  

Order Method Random Forest (RF) based solution in NRW pilot 
1 Selecting input 

satellite images  
Visually selected 8 time series of S2.  

2 Masking area of 
interest  

LPIS eligible area (AL/PG/PC) was used as a mask before image 
classification with the aim to reduce misclassification with categories out 
of interest. 

3 Selecting the most 
relevant spectral 
information  

Selecting the most important 18 Principal Component among the 8 
datesX9 = 72 bands 

4 Supervised 
classification  

Random forest, number of samples was set to 500 and number of trees = 
1000. The number of trees does not depend on the size of the area, but 
more on the diversity, what means partially the number of classes, but also 
the inner variability of a class, meaning the crop in our case. With higher 
tree number the oversampling regarding the large clusters will create less 
negative effect. 

5 Accuracy 
assessment  

50% of the reference data population is used as test data, which has been 
processed exactly on the same way as the 50% training.  
Calculated measures are integrated values (Overall accuracy, Kappa) and 
crop separate accuracy measures (user accuracy, producer accuracy, 
Kappa(i) Short (i) Hellden(i)).  

Table 15: Steps of Pixel based random forest supervised classification 

The RF result was compared to the result of the MXL classification. At the current stage of the analysis the 
advantage of the MXL method is that settings to increase the accuracy specified for a given class are available. 
In case of RF further investigation is necessary. The following overview examples represent the differences 
of the results:  

Here is an example how the crops are distinguishable with different clustering methods. Both image 
classification process had used the same polygon training data (blue boundaries) and the detailed crop 
classes (only CODE1 level of grouping).  
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Image 26: Comparing the result of the two image classification method  

on the same area, with the same input dataset 

   Broad bean (Acker-/Puff-/Pferdebohne) performed on a very similar way.  

   Peas (Gemüseerbse) are short period crops with smaller sum area, that is why at MXL the chance that pea 

pixels joins maize  is higher. It proofs the theory that Rf is not so sensitive for the area share of the reference, while 
MXL is. The result of the RF proofs the fact that most probably PCA was suitable to select the spectral information to 
detect the pea parcels.  

  winter wheat and triticale is not an easy task to separate. In case of /1 the MXL found the triticale as the 
observed crop but on case of /2 example the RF detected the winter wheat as it is in the test.  

The following example is the strangest finding of the comparison: mixture of  Permanent crops (PC) 
and of  fallow land was systematically classified by RF on locations where, in the reality, there are 
permanent grasslands along the river. The MXL classification detected well the PG areas.  

 
Image 27: RF – polygon reference data is used 
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Image 28: MXL – polygon reference data is used 

 

At the current stage the “black box effect” of RF makes it difficult how to improve the settings or the input 
data according to measurable parameters. The current result was reached via not automatized empirical 
experiments. High number of trees (1000) were chosen believing that it will be more sensitive to the large 
variety of crops.  

The detailed CODE1 was used for classification, and the result for groups of COD2 classes were created via 
summarizing the classes of the 1st cluster map afterwards. CODE 2 level of grouping crops is built upon CODE 
1 level. This ensures, that summarizing the predicted CODE1 classes along the rule as CODE 2 level is derived 
will lead to the predicted CODE2 classes. Due to the fact summarizing of CODE2 usually groups similar crops, 
the summed categories will lead to a clearer crop prediction map, what will be more accurate, as contains 
less mixing of crops. This method ensures us to study the importance and effectiveness of crop grouping as 
a single issue. If a new classification run would be implemented for CODE2 crop groups, the difference caused 
by a new random selection of training signatures may vary the result g iven the stochastic nature of the 
algorithm. 

Further investigation would need to clarify how the own sample set of RF and the trees can be saved, what 
could lead to repeatable test solutions and achieving better classification accuracy.  In this pilot, however, 
the target was just comparing how the different training samples perform.  

 

4.2 Accuracy assessment and comparing the results of the classifications using the 
misclassification matrix on the NRW site  

4.2.1 Integrated accuracy values on sample level 

For accuracy testing the other 50% of the GSAA reference data had been used. In geometry the following 
training and test data combinations were used:  

Type of reference data Training Test Value in the 
accuracy stats 

GSAA polygon (poly) Poly Poly Area in ha, % 
Random, maximum 8 

points inside GSAA 
polygons (rpoint_max8) 

10 meters of buffer 
around the Random 

points 

10 meters of buffer around 
the random points 

Number of pixels 
overlapping, % 

Inner centroids of GSAA 
polygons (cpoint_segm) 

Segmented units 
around inner centroid 

points 

10 meters of buffer around 
the inner centroid points 

Number of pixels 
overlapping, % 

Table 16. Training and test data used by the three types of reference data 

Segmentation of the test data was not implemented, to keep the original information source.  



38 

 

As the 1st step the confusion matrices for each 12 combinations were created. The combinations are the 
following:  

- 2 types of classification method: RF and maximum likelihood (MXL) 
- 3 types of test data derived from the GSAA: polygon and  maximum 8 random point  and  inner 

centroid point and segmentation 
- 2 versions of semantic grouping: CODE1 and CODE2.  

Since different measures incorporate different information of the confusion matrix, accuracy for the entire 
sample is evaluated by the following integrated valuesii:  

- Overall accuracy: the sum of the correct pixels divided by the total number of pixels,  
- Kappa: used to be a widely used accuracy measure in remote sensing, can be understood as a 

measure of agreement between prediction and reality, determines if the values in a confusion 
matrix are significantly better than a randomly obtained one. Kappa is calculated for the NRW pilot 
site, to study the conclusions of Pontius-Millonesiii, stating that “Kappa indices are useless, 
misleading and/or flawed for the practical applications in remote sensing. … abandon the use of 
Kappa indices for purposes of accuracy assessment and map comparison, and instead summarize 
the cross-tabulation matrix with two much simpler summary parameters: quantity disagreement 
and allocation disagreement.”  

As expected, the parcel-based reference data performed the best accuracy values of the classification. 
Further grouping of similar crops resulted in much higher -increase of more than 10% - accuracy values.  

   

   
Image 29. Sample level summarized accuracy measures 

 

4.2.2 Crop specific accuracy measures 
To be able to compare the accuracy of classifications, where only one input data/parameter is changed, the 
calculation of crop specific accuracy measures is more suitable, than the average measures itselfiv:  

- User accuracy indicates the probability that a pixel on the class-map represents the same class on 
the test area. 
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- Producer accuracy: the sum of the correct pixels divided by the total number of pixels per each 
category classified separately, showing the probability of a pixel being correctly classified. 

- Kappa(i): highlights only those instances that may have been correctly classified by chance. It is 
calculated using both the observed (total) accuracy and the random accuracy.  

- Short (i): a class-specific symmetric measure defined as the ratio of the intersection of estimated 
and true classes  to their union (in terms of set cardinality).  

- Hellden(i): mean accuracy index; a measure of overlapping between the true and estimated classes 
(other instances, e.g. “true negative” (TN), are ignored). 

- Average accuracy: means the simple mathematical average of the following crop specific accuracy 
measures: user accuracy, producer accuracy, Kappa(i) Short (i) Hellden(i).  

The conclusion is, that probably the classification algorithm chosen determines more the difference in 
individual class accuracy than the type of reference data.  

The following figures contain the “average accuracy”:   
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Average accuracy Code2  

  

Average accuracy Code2 

 
Image 30. Crop specific summarized accuracy measures 

 

 
Image 31. Differences of the class specific average accuracy values 
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“Average accuracy” means the simple mathematical average of the following crop separate accuracy 
measures in %: user accuracy, producer accuracy, Short (i) Hellden(i). 

 

 

4.3 An object based random forest classification implemented on the Austrian pilot site 

In this study the performance of the training data was tested by an object Based Random Forest classification 
of Sentinel-2 image time series.  

Order Method Random Forest based solution in Austrian pilot 
1 Selecting input 

satellite images  
Visually selected 11 time series of S2.  

2 Rasterizing the 
declaration of the 
GSAA 

Rasterization of the pixels which are overlapping the random/center 
points/buffered polygons.  

3 Calculating NDVI  Calculating NDVI for all pixels intersecting the polygons/random 
points / internal centroids 

4 Averaging 
bands/NDVI  

S2 bands / NDVI are averaged for each parcel for the polygon/random 
point method.  

5 Scaling Scaling the features to values between 0 and 1 using a standard 
scaler. 

6 Selecting the most 
relevant features 

Selecting the most relevant features using am principal component 
analysis. 

7 oversampling Oversampling of underrepresented classes using a synthetic minority 
oversampling technique (SMOTE). 

8 Supervised 
classification  

Training of an object based (parcel based) Random Forest classifier. 

9 Accuracy assessment  
50% of the reference data population is used as test data, what was 
processed exactly on the same way as the 50% training. 

For accuracy assessment, the classified crop types are grouped into 
crop groups. 

Calculation of accuracy metrics. 

Table 17. Steps of processing the Austrian pilot site  

 
Image 31: 3 types of input data: Green: polygons; Red: random points; blue: centerpoints 
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For the GSAA polygon input data, pixel and NDVI values were averaged for all pixels from rasterizing the 
polygons after applying a negative 20m buffer. Accordingly, for the random point method, all pixels 
overlapping such a point were averaged for each individual parcel. For the center point method, the pixel 
overlapping the centerpoint was considered to be the feature for classification. 

Only crops with at least 100 training parcels in the test area were considered for classification. As a result, 14 
crops were considered which were grouped into 11 groups after classification: 

The training input features, for each individual crop, were upsampled using a synthetic minority oversampling 
technique (SMOTE) to reduce the imbalance within the training data.  

The random forest classifier was trained using 500 trees and a maximum tree depth of 9. Increasing the depth 
of the classifier resulted in overfitting of the model.  

 

4.4 Comparing the results of the classifications using the misclassification matrix  on the 

Austrian site 

Using the test data, different metrics were used to determine the model performance.   

Overall accuracy: percentage of parcels in the test set that were classified in the same crop group as the 
declaration. 

Recall or producer accuracy: Percentage of correctly classified parcels for all parcels with a declaration in a 
particular crop group. True Positive / (True Positive + False Negative) 

Precision or user accuracy: Percentage of parcels classified as a member of a particular crop group which are 
also declared to be in that crop group. True Positive / (True Positive + False Positive) 

F1-score: Combined metric integrating precision and recall giving more weight to the lower numberv. 

 Polygons max.8 random points centerpoints 

Overall Accuracy 78.91 % 77.22 % 77.08 %  

F1 - Score 80.09 % 78.59 % 78.53 %  

4.4.1  

4.4.2 Recall for all crop groups 
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4.4.3 Precision for all crop groups 

 
Image 32. Accuracy measures regarding the Austrian Pilot site  

 

4.4.4 Metrics on parcel level - object based classification, 

Method where GSAA Polygons were used as training and test data:  
 

 

 

Relative accuracies for all crop groups (GSAA 
polygons) 

precision/recall for individual crop groups 

Image 32. Accuracy measures on crop parcel level regarding the Austrian Pilot site, where the entire GSAA polygon is 
used as training data  
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permanent pasture 474 14 34 4 262 0 4 0 0 0 0 

fodder grass 4 149 26 0 99 2 7 1 4 1 2 

green fallow land 14 5 102 1 14 0 4 2 1 0 1 

corn maize 1 3 1 768 2 3 206 10 1 0 1 

mowing meadow 188 442 89 0 2184 0 1 0 10 0 1 

beet 0 0 0 5 0 170 0 13 0 0 0 

silage maize 1 4 1 96 3 0 391 1 1 0 1 

soy beans 0 0 0 0 0 8 4 275 0 0 0 

winter barley 0 6 6 2 5 0 1 0 561 4 3 

winter rapeseed 0 0 1 0 0 1 1 0 14 111 1 

winter wheat 1 1 3 1 2 0 0 1 17 0 1079 

Table 18. Misclassification matrix containing absolute number of parcels (GSAA polygons) 

 

Method where random points (max 8) were used as training/test data:  

 

 

Relative accuracies for all crop groups (random 
points) 

precision/recall for individual crop groups 

Image 33. Accuracy measures on crop parcel level regarding the Austrian Pilot site, where 8 random points are used as 
training data  
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Misclassification matrix containing absolute number of parcels (random points) 
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permanent pasture 465 21 39 6 256 0 3 2 0 0 0 

fodder grass 6 136 29 1 102 4 7 0 5 2 2 

green fallow land 12 6 103 0 15 0 2 2 2 0 1 

corn maize 2 3 2 769 1 3 204 10 1 0 1 

mowing meadow 233 478 89 1 2097 0 4 0 12 0 1 

beet 0 0 0 6 0 165 1 16 0 0 0 

silage maize 1 3 1 97 4 1 386 3 2 0 1 

soy beans 0 0 0 1 0 6 8 272 0 0 0 

winter barley 0 6 6 2 4 0 1 0 557 8 4 

winter rapeseed 0 0 2 0 0 1 1 0 16 107 2 

winter wheat 0 1 5 2 3 0 2 0 21 0 1071 

Table 19. Misclassification matrix containing absolute number of parcels (random points) 

 

Method where center points were used as training/test data:  
 

 

 

Relative accuracies for all crop groups (center 
points) 

precision/recall for individual crop groups 
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Image 34. Accuracy measures on crop parcel level regarding the Austrian Pilot site, where inner center points are used 
as training data  
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permanent pasture 460 26 44 1 259 0 1 1 0 0 0 

fodder grass 5 132 24 1 113 3 6 1 6 1 2 

green fallow land 15 7 88 0 22 0 3 3 1 0 4 

corn maize 1 2 1 794 2 2 182 10 1 0 1 

mowing meadow 228 498 82 0 2092 0 3 0 12 0 0 

beet 0 0 0 6 0 169 2 11 0 0 0 

silage maize 1 3 2 108 3 1 377 1 2 0 1 

soy beans 0 0 0 1 1 10 5 270 0 0 0 

winter barley 0 10 6 2 4 0 2 0 553 6 5 

winter rapeseed 0 1 3 0 2 1 0 0 9 111 2 

winter wheat 0 1 6 2 2 0 1 0 22 0 1071 

Table 20. Misclassification matrix containing absolute number of parcels (center points) 

 

When comparing the three methods, the polygon-based classification model reaches the highest overall 
accuracy. The models using random points or only the centerpoint reach slightly lower accuracies, but 
overall, the results do not differ very much from each other.  

Overall, the grassland groups (permanent pasture and mowing meadow) reached the lowest real values, 
which were expected due to their spectral variability. Notable is also the confusion between winter barley 
and winter rapeseed, which accounted for 7-12% of all parcels declared as rapeseed. The most notable 
difference in classification recall occurred in grassland classes, with green fallow land being classified about 
10% worse using the centerpoint method. 

 

5 Conclusions and lessons learnt 

5.1 The results of the pilot study 

The following overall results are nominated:  

 Methodology of processing GSAA data to become a reference of image classification is developed 
further 

 Suitability of all 3 geometrical types of training data is proven, but determined by the classification 
methods 
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 Crop separate crop classification cluster maps are derived, and directions of further developments 
are drafted.  

The outputs of this pilot can lead to:  

 support the decision that in what format MSs should make available their GSAA data,  
 defining standard rules and data structure of GSAA data,  

 advising MSs how to define the thematic of GSAA data for best supporting satellite image analysis – 
useful for CbM as well, 

 further testing of image classification solutions: integrating S1 (radar), testing other machine learning 
algorithms, automatizing how regional aspects can be taken into account 

 demonstrate how a more detailed classification of habitats and land uses could serves the AMS, to 
monitor changes, or to delineate the target area of certain interventions; 

 stepping further towards interoperability.  

 

5.2 Proposing recommendations on the acceptable degree of geometrical generalization 

considering privacy and economic interests of the farmers and the MS 

The pilot study has proven the successful use of geometric generalization of GSAA data for training models 
of crop type classification. In this pilot the performance of 3 training data was tested with 2 types of popular 
classification methods. The following 3 training data processing was defined during the pilot study:  

 
Image 35. Geometrical Generalization of GSAA data 

The “maximum 8 point” training sample performed generally slightly higher misclassification rates compared 
to using the entire GSAA polygon when maximum likelihood classification was used. When random forest is 
used, the training representation with 8 points is the less suitable, this presented the highest difference in 
accuracy measures of recall and precision. The reason is, that the random forest algorithm includes the 
generation of training points, and it is designed for representing polygons, and not for further selecting points 
among a given set of points. Other machine learning algorithms could also be tested. 

The single centroid point representation of GSAA data alone didn't produce accurate results. The use of inner 
centroid of a crop parcel only fits for the purpose when a segmentation algorithm is used to extend the 
sampling environment. Segmentation balances the loss of information as compared to the use of the entire 
GSAA polygon.  

As comparing the different training input data, the difference in classification accuracy is under 2%. This 
interval of accuracy difference could also be compensated by the parametrization of the models or by the 
grouping of training data.   As a general conclusion the use a single inner centroid of IACS crop parcels for 
crop classification is proven. Seamless crop map with similar accuracy values can be derived as for areas 
where the entire are of the declared parcels are available.  
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The GSAA data of 2 member state was used, but the data of other 3 member states (CZ, HU, RO) was also 
analyzed from classification perspective. The declarations are in all cases are on individual crop level, and 
thus the same similarity and complexity rules can be applied to define the groups suitable for classification. 
Although we know that there are strong regional differences regarding crop types and crop phenology 
behavior, a unified system of selecting training data among the GSAA parcels and to group the parcels for 
classification can be defined.  

As the breakdown of classes for the crop map was defined to experiment the capability of crop distinction at 
the level of detailed crops (CODE1 in NRW site). Generalization and grouping of crops into wider categories 
would lead to better classification accuracy values, and will be suitable for AMS, for calculating performance 
indicators, and for strategic planning and evaluation of the CAP.   

 

5.3 Use of GSAA and LPIS data for training and validation of supervised crop classification 
models 

 

5.2.1. Generating training data for crop classification from a GSAA dataset 

The breakdown of crop type to individual crop level would be fundamental to derive the same groups from 
different GSAA sources. This is one of the key point to standardize the process for European level.  Crop types 
are however, not available in each context as the data is shared under INSPIRE, but always do exists in IACS 
managed by the Paying Agencies.  

To avoid misleading models, aggregated data types such as “winter coverage” or “forage for wildlife” must 
be excluded from training. This ensures that these parcels will be classified according to the type of crop 
really present on them. The same effect is generated if the crop cultivated on a set aside is not available. 
Distinction between AL-set aside and AL-fallow land is necessary.  

GSAA should contain the delimitation and the timing of catch crops and of winter cover crops, cultivated 
after or before the main crop. This has an impact on  the categorization of training data and the selection of 
time series. Only those declared parcels can be used, which delineate single units of land management, i.e. 
which represent a continuous FOI.  

Depending on its reference parcel type, LPIS data are fundamentally important. They allow masking out the 
natural vegetation, e.g. forest and wetland areas, to ensure that the classification runs on the eligible area 
only. Categorization of agricultural area in AL/PG/PC/NAEA give further input for classification. The geometric 
and semantic consistency of the GSAA and the LPIS data must be checked.  

 

5.2.2. A recommended approach to derive training and test data from polygon representation of 

GSAA datasets:  

1. Analyzing the crop and crop group types to filter out the heterogenous groups. Usually, it is needed 
when categories, which contain a summary of different crops, are aggregated in the GSAA based on 
other driving factors than the crop type.  

2. Implement a negative buffer along the boundaries of the GSAA polygons to exclude  the mixed pixels 
from the training data of the classification. The 10 and 20 m of negative buffers were selected in 
function of the GSD of the input stack image. Setting up a minimum size of parcel corresponding to 
the GSD of the input image stack is also needed – minimum 6 pixels, leads to 2000 m2 if bands with 
GSD= 20 are used.  

3. Define groups of crops through semantic grouping, which is determined by:  
o the target of the classification – the required level of detail of output classes; 
o the crop codes in the classification nomenclature. However, to keep separate the same crop 

with the same management practice in different classes (e.g. maize for corn and maize for 
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seed) will never form an independent class during the classification, even when separate 
training data is formed for them;  

o merging of at training input level with similar development (spectral signature) on the given 
set of input satellite images, is essential to get a usable result of cluster map, based on the 
prior knowledge, that these crops cannot be separated by the given classification algorithm. 
This can only be based on knowledge about the local crops (not always available), otherwise 
this step is difficult to automatize. It can be supported by additional examination of the 
vegetation curves using regression models, or by unsupervised classification.  

4. Separate training and test samples – preferably with stratified random selection (proportional to the 
area or to the number of training parcels).  

5. Delete those groups which do not reach the minimum amount of valid reference data. Crop types 
represented under the minimum amount of training information will also depend on the chosen 
classification algorithm.  
 

 
Image 36. Distribution of tasks of deriving reference data for image classification from a GSAA 

database 
 

5.2.3. Deriving training and test data from point representation of GSAA datasets: 

- Point 1, and 3 are valid also for point representation.  
- Point 2 and 5 do not apply to point representation  
- In case of point data detect the similar set of pixels around the point with a segmentation algorithm 

worked to be the most effective solution.  
- Separate training and test samples (Point 4) can be parametrized  proportionally to the number of 

points in the group, or to the area in case of option (2).  
 

6 Further possibilities, next steps of the study  

Based on the current activity, several directions for improving the data processing and  classification methods 
are foreseen, which could eventually lead to the its standardization :  
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1. To extend crop maps generation to other countries the largest constraint is the quality of GSAA data. 
It has to be tested if it is suitable for training supervised classification models. Two main directions 
are planned: (1) to evaluate the validation level and quality of the parcels flagged as green in the 
CbM workflow. (2) filtering out of the training set the not trustable parcels by validating if a declared 
parcel correspond to a single feature of interest (FOI). This latter could be based on  multi-annual S2 
image time series and analyzing the vegetation curves of the declared crop  in a region to determine 
local characteristics and variations.  

2. This pilot was implemented on small test sites that can be considered as homogenous agricultural 
regions. To achieve similar accuracy of detailed crop-maps, a semi-automatic methodology to 
delineate homogenous regions could be developed. Another direction is to investigate methods that 
could handle the temporal shifts of similar vegetation curve of the same crop (an example is the 
dynamic time warping). The effect of the size and diversity of categorized area on the accuracy could 
be studied in depth.  

3. The random forest algorithm resulted in worse classification accuracy than the maximum likelihood. 
That is why further testing on parametrizing the RF is needed. The next logical step  would be to run 
it directly using the summarized crop groups (CODE-2) as training data, instead of merging the classes 
after the crop level classification. This would lead to understand how the training input determines 
the distribution of trees. Also, the performance of other machine learning algorithms could be 
compared to the current results.  

4. We know from previous experiences (cit.), that the integrated use of radar (S1) and optical (S2) data 
leads to more accurate results for some crops. The main AL-crops had been surprisingly well 
separated with the S2 based processes, but for distinguishing multi annual graminid-dominant 
energetic crops (like Acre-grass) from the permanent grassland the data content of S1 time series 
seems to be necessary. A proposed test case could be to define methods on how to integrate S1 
decomposites into the classification input.  

5. Stepping further towards interoperability, pilot cases on how a more detailed classification of 
dedicated habitats and land uses serves the AMS could be implemented. For example, multi-annual 
classification of sensitive permanent grasslands, or PG-ELP categories could lead to the monitoring 
of changes, or to delineation  of certain interventions  on specific areas.  
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7 References and acknowledgements  

7.1 Abbreviations  

AEM – Agri-environment measures  

AL/PG/PC/NAEA – arable land/permanent grassland/permanent crop/non-agriculture eligible area 

AMA - Agrarmarkt Austria 

AMS – Area Monitoring System 

BPS -Basic Payment Scheme 

BOA – Bottom of atmosphere 

CAP – Common Agricultural Policy 

CbM -Check by Monitoring 

DTM – Digital Terrain Model  

EU – European Union  

FOI – feature of interest 

FL – fallow land 

FN – false negative  

FP – false positive 

GSAA – Geospatial Aid Application 

GSD -ground sampling distance  

IACS -Integrated Administration and Control System  

LCC - Land Cover Classification 

LPIS - Land Parcel Identification System 

L2A – Level 2A 

MS – member states  

ML – machine learning 

MXL - maximum likelihood classification 

MS – member states of the EU 

NDVI - Normalized Difference Vegetation Index 

NRW – North-Rhine Westphalia 

OTSC – on-the-spot control 

PA – Paying Agency  

PB – Physical block of LPIS 

PCA – principal component analysis 

PG-ELP – permanent grassland – established local practice  

PMEF – Performance-based Monitoring and Evaluation Framework in agri-environment-climate policy 

RF- random forest classification  

RGB – red/green/blue of image color composite  

SAPS – Single Area Payment Scheme 

S1 – Sentinel-1 radar image  

S2 - Sentinel-2 optical image 
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TG -temporary grassland 

TN – true negative  

TP – true positive  

 

7.2 Technical resources used 

Different combinations of open source SW shad ben used to complete the pilot study:  

- QGIS version 3.16.1-Hannover for general GIS processes and for visualization of the results,  
- SNAP - ESA Sentinel Application Platform 8.0.3 - to run classifications  

- Semi-Automatic Classification Plugin (SCP) is a free open source plugin for QGIS that allows for the 

semi-automatic classification (also supervised classification) of remote sensing images, Congedo Luca 
(2020). Semi-Automatic Classification Plugin Documentation.  

DOI: http://dx.doi.org/10.13140/RG.2.2.25480.65286/1 

- GDAL/OGR contributors (2021). GDAL/OGR Geospatial Data Abstraction software Library. Open Source 

Geospatial Foundation. URL https://gdal.org 

- OGR, Numpy, SciPy, and Matplotlib under Jupyter Notebooks – a publishing format for reproducible 

computational workflows Authors: Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian 

Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain 

Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, Jupyter Development Team 

- Temporal/Spectral Profile Tool Plugin – License GNU GPL 3 © 2020 DHI-GRAS A/S to plot raster bands 

from the selected raster layers,  

- Ms OfficeXcell to create matrixes and charts.  

- Scikit-learn to train/test the classifier in the Austrian testsite and to calculate accuracy metrics. URL 

sklearn.org 

- imblearn to apply oversampling. URL imbalanced-learn.org 
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