Agenda	2
Outreach_Part1_Practice2signal_19Nov21 (1)	3
Data_analyses_2_Outreach_Part2_CbM_Frontend_19Nov21	37
Data_analyses_3_Outreach_Part3_Signals_and_Processing_19No-	
v21	56
Data_analyses_4_Outreach_Part4_Signals_and_Processing_19No-	
v21	76
Data_analyses_5_Outreach_Part5_Marker_Detection_19Nov21	91

Webinar CbM Outreach on Data analyses

Date: 19th November 2021

Agenda

- 09:30 09:35 Welcome
- 09:35 10:20 Translating practice to signal behaviour (Rafal Zielinski, JRC)
- 10:20 10:40 RESTful data access refresh and updates (Guido Lemoine, JRC)
- 10:40 11:25 Signals and Signal Processing Part I (Daniele Borio, JRC)
- 11:25 11:40 Break
- 11:40 11:55 Signal and Signal Processing Part II (Daniele Borio, JRC)
- 11:55 12:25 Mowing Marker Detection (Daniele Borio, JRC)
- 12:25 13:00 Q&A, discussion (Rafal Zielinski, JRC)

Outreach: translating practice to signal behaviour

CbM Outreach 2021

Webinar, 19/11/2021

Joint Research Centre

Agenda

09:30 - 09:35	Welcome
09:35 - 10:20	Translating practice to signal behaviour
10:20 - 10:40	RESTful data access - refresh and updates
10:40 - 11:25	Signals and Signal Processing - Part I
11:25 - 11:40	Break
11:40 - 11:55	Signal and Signal Processing - Part II
11:55 - 12:25	Mowing Marker Detection
12:25- 13:00	Q&A, discussion

- An overview of scenarios collected in outreach
- Practices (mowing related)
- Ground truth derived signal behaviour for mowing practices
- Conclusion

Base concepts of CbM

* enactment of the *lane rules* updated documentation in preparation

JRC TECHNICAL REPORTS

on the introduction of monitoring to substitute OTSC: rules for processing applications in 2018-2019

What is scenario?

• Scenario describes the sequence of stages (LC manifestations), that can be expected from the farmer's choice to use his land over a given timespan.

An example for permanent grassland

Function of scenario in CbM

- The scenario brings the local business logic into the process by integrating image based analyses with the available local know-how on crop phenology and/or the agricultural practices.
- Markers detect specific signal behaviour, related to particular bio-physical manifestation of the FOI. Scenario places that manifestation (state or change of state) in the context of the intended use and local farm practices. By doing so, an observed land cover-related manifestation can reliably be attributed to a particular activity

Scenario-related template

- Eligibility criteria (scheme, periods of application, crop type, etc)
- Practices, type, number of actives, potential sequence of stages and corresponding time frame
- Condition of LC manifestation (Pre-condition, Midcondition, End-condition)
- FOI: CbM boundary conditions, FOI generic information (type, shape, linage) verification method and pre-selection conditions
- Data collected from 13 MS

			4.0	FOI:	: CbM boun	dary	conditions			
			4.1	FOI	Geometry: /	Area	Insert a free	e tex	t: e.g. FOI wit	h
		2.7	Expe	ected s	equence	E.g.	Assuming, S	TC1	- mowing	0
	2.0	Applicable Scenario				equence				
	2.1 Related Schem			es	Free text insert here: e.g. (SP			PS,	s: STC1,	
Code	Торіс			Value			1	practices):		
0.1	Project name			Outreach CbM				,		
0.2	Indicat	e a nam	e and	Name	e <mark>surname</mark> :				vents	
	contact	t details	of	Institution: Contact details:						
	person	provide	d the							
	informa	ation						_	e.g. single	
0.3	MS/PA	code		e.g. L	DE-SH, BG,	HR				
0.4	Templa	ate versi	on	v.1.0				_		
0.5	Date of	f entry		DD.M	IM.YYYY			_		-
1.0	Generi	ic inforı	mation	(proj	ect object	ive)				
1.1	Descrip	ption of t	the -	Free	text inset l	nere:				
	prototype - marker		rker	Outreach: mowing detection					<u>_</u>	
	objecti	ve								e
4.0		6.11		D 1				=	=	
1.2	Aspects of the real- world phenomenon addressed by the		Possi	ble answer	s:					
				manaral			-			
				emporai Natio Tomp	oral					
	prototy	pe mark	ker:		auo-remp	orai				
1.3	Role of	the mai	rker	Used	as stand-a	lone	or	-	_	
1.0		che ma		toget	her with ot	her n	arkers in			
				an in	formation e	extrac	tion	1		-
				workt	flow					
				Possi	ble answer	s:			tinauishina	1
				Stand-alone				material		
				🗌 🔲 Int	formation e	extrac	tion		ne or	
				workf	flow				insic mix	
				🔲 No	o preferenc	е			vertical	
	ļ				1					
	1	Ι.			I					1

7

Scenarios: payment schemes

- Reported schemes for mowing: 9/13 BPS, 4 SAPS
- 5 MS are considering mowing activity detection to be used in support of other schemes: ANC,NATURA, National scheme: GLAS
- For 12 MS (BPS), during the observation period must occur:
 - at least one mowing or grazing (10 MS)
 - at least one mowing (2 MS)
- Note: mowing is a general but includes 3 distinct activities: mowing (hay, silage) and topping

Scenarios: eligibility criteria

- Required activity should take place in a given period
- Permanent grasslands (11/13 MS)
 - April September*
- Temporal grasslands (6/13 MS):
 - March September*
- *Some MS declared a full calendar year frame.
- Specific conditions (3/13 MS) for particular grasslands types, i.e. karst pastures)

Eligibility criteria observation periods for permanent grasslands

Eligibility criteria observation periods for temporal grasslands

10

Scenarios: Practices (1/2)

Practices - "agricultural activities" as applied by local farmers

- Practices specified by MS/PA for the scenario
 - 9 MS/PA mowing grass for hay
 - 8 MS/PA mowing grass for silage
 - 5 MS/PA topping

• Mowing is expected in May-August

Period when mowing is may happen for permanent grasslands

Scenarios: Practices (2/2)

- 11 MS/PA reported the expected number of activities during the season on permanent grasslands
- From 1 to 9 activities (mowing and grazing) may take place depending on local conditions

Number of possible activities on permanent grassland

🗖 Max 🗖 Min

Commission

LC manifestations for mowing activity

Scenarios: Pre-Conditions

- The grass is mostly mowed as fresh (11/13 MS). In 2 cases the grass can be cut also dry.
 - **Hay: cut as fresh** in all of MS/PA (9 out of 9 MS/PA)
 - Silage: mostly cut as fresh (7 out of 8 MS/PA). In one MS/PA the grass is cut fresh and dry conditions (South of Europe).

Mowing silage source: agriland.ie Collection of grass for silage

14

Scenarios: Mid-Conditions:

- In case of hay (described by 9 MS/PA): collection in 2-14 days
- In case of silage (described by 8 MS/PA): the grass is immediately collected after cut or within 48 hours

Mid-Condition for Hay

Scenarios: Post-Condition

- Re-occurring periods are quite different and closely linked with the local practices and environment conditions
- The intervals between two consecutive activities last between 15-60 days (average about 30 days)

3 MSs have not provided data

Mowing - topping

- Event: grass is cut/shorten
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Presence of dry/dead vegetation, mixed with a fresh vegetation underneath, both covering soil
- End-condition:
 - Short grass, visible soil, and residuals partitioned and evenly distributed, not covering entirely the gr (changing from fresh – dry- fertilizer)

Mowing - silage

- Event: grass is cut/shorten
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Absence of cut grass (immediate, collection up24h)
 - Open soil
- End-condition:
 - Short grass, visible soil, and potentially dry matter.
 - Open vegetation cover

considering S1/S2 revisit time

Mowing - hay

- Event: grass is cut/shorten
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Presence of dry/dead vegetation covering the crop for (i.e. 7-14) days
 - Potential changing appearance due to mechanical operations with grass left to dry (tedding, raking, baling)
- End-condition:
 - Followed by very short grass, visible soil, and potentially dry matter

Mowing hay without collection

- Event: grass is cut/shorten
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Presence of dry/dead vegetation covering the soil
 - Lack of changing appearance due to mechanical operations with grass left to dry
- End-condition:
 - Decomposition of cut grass residuals
 - Followed by overgrown of grass
 - Open vegetation cover

Grassland – crop removal + re-seeding

- Event: grass/crop removal
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Full crop cover removed
- End-condition:
 - No vegetation, bare soil persistently observable

Grassland – crop removal

- Event: grass/crop removal
- Pre-condition:
 - Fresh grass normal height at full development
 - Dense/close vegetation cover
- Mid-condition:
 - Full crop covered removed
- End-condition:
 - Bare soil persistently observable

Ground truth data vs signal behaviour

- Random selection of small subsets of available ground truth datasets from 3 MSs
- Activities dates were extracted
- The S1 and S2 observations shortly before and after activities were extracted and organised in a weekly pattern (given by the date of an activity)
- Variability and Mean-Variance analyses (only selected results shown below)

Ground truth data vs signal behaviour

Dataset: 3 subsets with 25 FOIs/parcels of permanent grasslands

IE dataset					
Frequency of observation:	weekly				
Time stamp:	week of the year				
Number of activities:	Yes*				

* Including: crop, phenological stage, activities: silage, hay, topping, zero grazing, grazing, harvest crop

50+/year

CZ dataset				
Frequency of observation:	≥ 2 times in a season	** Including		
Time stamp:	a data range, start and finish	2/year		
Number of activities:	Yes**			

LV dataset					
Frequency of observation:	once a season***	*			
Time stamp:	date of a visit	1			
Number of activities:	Yes**				

* Including: mowing and grazing

***geo-tagged photos available

1/year

Change of LC manifestation in Coh6 and NDVI

CZ (ndvi): mowing

- NDVI indicating the amount of green chlorophyll containing biomass, after cut decrees thus lower values after the activities are recorded.

- after activity NDVI value drops for next 2 weeks then starts increasing, due to noticeable sings of regrown (depends of the practice and mid-condition, CZ no specific data)

Stdev values 68%

CZ (coh6): mowing

- before activity Coh6 value is nearly at the same level as in a week of activity (only one week before activity considered)
- Removal of vegetation cause increase soil participation thus increase the coherence value.
- after activity Coh6 value increases for next 2 weeks then starts decreasing together with sighs of vegetation regwon

Change of LC manifestation in coherence

IE (ndvi): mowing

- Often May-July with a single cloud free acquisition per month

- Not enough valid data S2, only **15%** observations in comparison to Coh.

Read me: Voormansik, et al. 2020, Tamm, et al. 2016

IE (coh6): mowing

- Similar signal behavior observed
- before activity Coh6 value is nearly at the same level as in a week of activity
- after activity Coh6 value increase for next 2 weeks then starts decrees with the vegetation regrown. In the presence of vegetation, temporal decorrelation decreases the measured coherence.

• Mean

Coherence based signals

Signals (Coh6)

The difference between VV and VH maybe caused by discrepancies in scattering due to vegetation structure and soil roughness.

Mowing types in signal behaviour (1/2)

- IE (coh6 VH_A, mowing types)
- Practices mowing (hay, silage)
- Significant difference Coh (VH_A) value increase after the activity recorded
- ΔVH_A(hay) twice bigger than ΔVH_A(silage) for consecutive weeks after activity
- Important for developing mowing detection algorithms based on S1

Mowing types in signal behaviour (2/2)

coh6

Example of LC manifestation in S2 bands

Mowing (CZ), Spectral bands S2 (4,8,11)

- Similar analyses can be done for any band or signal derivative
- important when considering inclusion of 'a new' signal in processing

Ground truth data

- Many protocols/data sources of ground data collection
 - Dedicated **field surveys**
 - Geo-tagged photos /aerial orthophoto, aerial oblique imagery
 - Control data (RFV, OTSC)
- Knowledge of the activity date is a crucial element of signal data analyses
 - **frequency of observations** in a season (best: weekly; more the better depends on duration of the phenomena observed)
 - **type of information recorded** (best: crop, crop phonological status, activities observed and date; at least: date of observed activity)
 - spatial coverage data collection (flexible according to survey plan or fixed distribution of existing control data)
 - number of parcel observed (cost of new survey vs reuse of existing information)

The correctness of FOI crucial for analyses

Parcel area = **32 ha** Single FOI

- Number of activities reported = 20+
- Multiple AP in a single FOI (not homogeneous)
- S1/2 statistics extracted no problem
- Possibly detected makers would not be valid
- Need for FOI validation procedure

Final observations

- Good understanding of practices is the key element of developments
- Conditions (pre, mid, end) help to translate practices to signal behaviour
- Ground observation are important for both: understanding the signal behaviour and quality control of the outcome
- For any future data collection surveys important careful planning, no click and deliver, the result will be available after a season
- Fit for purpose ground observation. Detailed data recorded give more possibilities for data analyses
- The 'smartest' analytical approaches will not give a proper results if your FOIs are not correct.

Thank you

rafal.zielinski@ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

CbM on DIAS: Refresher & data access

Online training for Outreach, 19 November 2021

JRC D5 – GTCAP Team

Agenda

09:30 - 09:35	Welcome
09:35 - 10:20	Translating practice to signal behaviour
10:20 - 10:40	RESTful data access - refresh and updates
10:40 - 11:25	Signals and Signal Processing - Part I
11:25 - 11:40	Break
11:40 - 11:55	Signal and Signal Processing - Part II
11:55 - 12:25	Mowing Marker Detection
12:25- 13:00	Q&A, discussion

Outreach

- **Outreach** is a capacity demonstrator which:
 - Groups CbM processing needs for Sentinel data on a single platform
 - Deploys back-end components to provide analysis ready data
 - Handles all intrinsic DIAS processing details on a JRC managed instance
 - For selected thematic CbM application contexts
 - Jointly designed with participating Member State PAs
- Back-end and front-end modules were explained in previous Webinars
- Today is about plugging frontend data pipelines into analysis workflow
- Applied to grassland mowing scenarios

Refresher

- The backend integrates access to the Sentinel data archive
- Provides functionality and processing power to generate Analysis Ready Data
- Runs parcel extraction as a key reduction stage in CbM.
- Fit for purpose for full territory, operational needs
- Best place to integrate and scale up common data processing patterns
- The frontend **consumes** the backend data to support typical PA functions
- Through the use of standard protocols in particular RESTful
- Supports best-in-class interactive and machine analysis, reporting
- Focus on parcel reductions, but extendable to direct image access
- Following the "reduction first, escalate for specific cases" CbM paradigm
- All Outreach participants have exclusive access to their CbM data sets

CbM Frontend data access

- Data Access
- **RESTful API updates**
- Most common mistakes
- Usage statistics

CbM data access

RESTful API

RESTful API Requirements:

- RESTful account from JRC
- Basic programing knowledge*

JRC does not provide direct database access

Data Exports

Alternative data access Requirements:

- Extracted data from JRC database
- A Postgres database server with PostGIS
- Good backend server management skills
- Good programing skills

RESTful API requests structure

RESTful queries

- Parcel information
 - parcelByLocation, parcelByPID
- Parcel signatures time series
 - parcelTimeSeries
- Parcel sentinel images
 - chipByLocation, rawChipByLocation
- Parcel orthophotos
 - backgroundByLocation, backgroundByPID
- Parcels lists
 - parcelPeers, parcelsByPolygon

RESTful - Parcel Time Series

• parcelTimeSeries

cap.users.creodias.eu/query/parcelTimeSeries?aoi=AA&year=2020&pid=123&tstype=s2

RESTful - Parcel Time Series examples

Get parcel Time series:

cap.users.creodias.eu/query/parcelTimeSeries?aoi=ms&ye ar=2020&pid=1234&tstype=s2

Notebook

[2]: cbm.show.time_series.ndvi('ms', '2020', '12345')

Browser

\leftrightarrow \rightarrow	сí	<u>ه</u>	lot secu	re 185.1	78.85.7	/query/par			i=hr&ye			7&ptype=g&t	stype				
{"date pa	rt": [15	7026903	.024. 15	70269031.	024, 15	70269031.	024, 15	70269031.	024, 15	70269031.	024, 15	70269031.024	4. 157	70701029.02	25, 15	70701029.025,	1570
15707010	29.025	1570701	029.025,	15707010	29.025	15711330	31.024,	15711330	31.024,	15711330	31.024,	1571133031.	Ó24,	1571133031	. <u>ó</u> 24,	1571133031.02	4, 1!
15715650	29.024	1571565	029.024	15715650	29.024	15715650	29.024,	15715650	29.024,	15719970	61.024,	1571997061	.024,	157199706	1.024,	1571997061.0	24, 1
15719970	61.024	1572429	039.024,	15724290	39.024	15724290	39.024,	15724290	39.024,	15724290	39.024,	1572429039	.024,	157286112	1.024,	1572861121.02	24, 1
15728611	21.024,	1572861	121.024,	15728611	21.024,	15732930	39.024,	15732930	89.024,	15732930	39.024,	1573293089.	024,	1573293089	9.024,	1573293089.02	24, 1
15737251	71.024	1573725	171.024,	15737251	71.024	15737251	71.024,	15737251	71.024,	15741571	29.024,	1574157129	.024,	157415712	9.024,	1574157129.0	24, 1
15741571	29.024	1574589	211.024,	15745892	11.024,	15745892	11.024,	15745892	11.024,	15745892	11.024,	1574589211.	024,	1575021169	.024,	1575021169.02	4, 15
15750211	69.024,	1575021	169.024,	15750211	69.024,	15754532	41.024,	15754532	41.024,	15754532	41.024,	1575453241.	024,	157545324	1.024,	1575453241.02	24, 1
15758851	89.024	1575885	189.024,	15758851	89.024	15758851	89.024,	15758851	89.024,	15763172	41.024,	1576317241	.024,	157631724	1.024,	1576317241.0	24, 1
15763172	41.024	1576749	199.024,	15767491	99.024	15767491	99.024,	15767491	99.024,	15767491	99.024,	1576749199	.024,	157718126	1.024,	1577181261.0	24, 1
15771812	61.024,	1577181	261.024,	15771812	61.024,	15776131	99.024,	15776131	99.024,	15776131	99.024,	1577613199	.024,	157761319	9.024,	1577613199.0	24, 1
15780452	41.024,	1578045	241.024,	15780452	41.024,	15780452	41.024,	15780452	41.024,	15784771	89.024,	1578477189	.024,	157847718	9.024,	1578477189.0	24, 1
15784771	89.024,	1578909	231.024,	, 15789092	31.024,	15789092	31.024,	15789092	31.024,	15789092	31.024,	1578909231	.024,	157934114	9.024,	1579341149.02	24, 1
15793411	49.024,	1579341	149.024,	15793411	49.024,	15797731	91.024,	15797731	91.024,	15797731	91.024,	1579773191.	024,	157977319	1.024,	1579773191.02	24, 1
15802051	09.024,	1580205	109.024,	15802051	09.024,	15802051	09.024,	15802051	09.024,	15806371	41.024,	1580637141	.024,	158063714	1.024,	1580637141.0	24, 1
15806371	41.024,	1581069	059.024,	15810690	59.024,	15810690	59.024,	15810690	59.024,	15810690	59.024,	1581069059	.024,	158150108	1.024,	1581501081.0	24, 1
15815010	81.024,	1581501	081.024,	15815010	81.024,	15819330	29.024,	15819330	29.024,	15819330	29.024,	1581933029	.024,	158193302	9.024,	1581933029.0	24, 1
15823650	21.024	1582365	021.024,	15823650	21.024	15823650	21.024,	15823650	21.024,	15827970	29.024,	1582797029	.024,	158279702	9.024,	1582797029.0	24, 15
15827970	29.024,	1583229	031.024,	15832290	31.024,	15832290	31.024,	15832290	31.024,	15832290	31.024,	1583229031	.024,	158366102	9.024,	1583661029.0	24, 15
15836610	29.024,	1583661	029.024,	15836610	29.024,	15840930	31.024,	15840930	31.024,	15840930	31.024,	1584093031	.024,	158409303	1.024,	1584093031.0	24, 15
15845250	29.024	1584525	029.024.	15845250	29.024	15845250	29.024.	15845250	29.024.	15849570	31.024.	1584957031	.024.	158495703	1.024.	1584957031.0	24, 15

RESTful API updates

- Available data: information of the data that is available for the user in json format:
 - <u>https://cap.users.creodias.eu/query/info</u>
- Swagger/Flasgger an easy to use interface to get started with RESTful requests:
 - <u>https://cap.users.creodias.eu/apidocs/</u>
- parcelsByPolygon: returns a list of parcel within a given polygon
 - cap.users.creodias.eu/query/parcelsByPolygon?aoi=AA&year=2020&polygon=[polygon_coordinates]
- Fix sentinel images requests for selected parcel ID or location
 - <u>https://cap.users.creodias.eu/query/rawChipByParceIID?aoi=MS&year=2020&pid=1234&start_date=2020</u> -01-01&end_date=2020-01-30&band=B04&chipsize=920
 - <u>https://cap.users.creodias.eu/query/rawChipByLocation?lon=5.123&lat=55.123&start_date=2020-01-01&end_date=2020-01-30&band=SCL&chipsize=920</u>

RESTful API available data

<u>https://cap.users.creodias.eu/query/info</u>

```
{
    "server": {
        "title": "RESTful API for CbM.",
        "host": "https://cap.users.creodias.eu",
        "description": "Main development server for CbM",
        "license": "3-Clause BSD"
    },
    "aois": {
        "befl": {
            "dataset types":
                "c",
                "m"
            ],
            "vears": [
                "2019".
                "2020"
            1,
            "ts data": [
                "s2",
                "bs",
                "c6"
            ],
            "id table column": "parcel id".
            "id examples": [
                1261601602.0,
                1716403074.0.
                1698388659.0
            1,
            "request examples": {
                "parcelById": "https://cap.users.creodias.eu/query/parcelById?aoi=befl&year=2020&pid=1698388659.0&ptype=c&withGeometry=True",
                "parcelTimeSeries s2": "https://cap.users.creodias.eu/query/parcelTimeSeries?
aoi=befl&year=2020&pid=1698388659.0&ptype=c&tstype=s2&scl=True&ref=True",
                "parcelTimeSeries bs": "https://cap.users.creodias.eu/guery/parcelTimeSeries?aoi=befl&year=2020&pid=1698388659.0&ptype=c&tstype=bs",
                "parcelTimeSeries_c6": "https://cap.users.creodias.eu/query/parcelTimeSeries?aoi=befl&vear=2020&pid=1698388659.0&ptype=c&tstype=c6".
                "backgroundBvParcelId": "https://cap.users.creodias.eu/guery/backgroundBvParcelId?
aoi=befl&year=2020&pid=1698388659.0&ptype=c&chipsize=256&extend=512&iformat=png"
}
```


False

 \sim

Parcel Tir	me Series	~
GET /p	parcelTimeSeries Get parcel signatures extraction time series by parcel ID.	
Parameters		Try it out
Name	Description	
aoi * ^{required} (query)	Area of Interest (The member state or region code).	
	aoi - Area of Interest (The member state or re	
year * required	The year of parcels dataset.	
(query)	year - The year of parcels dataset.	
pid * required	The parcel ID.	
(query)	pid - The parcel ID.	
ptype (query)	Parcel type (use only in case there are separate parcel tables of the same year dedicated to different type of analyses or for different regions).	
	ptype - Parcel type (use only in case there an	
tstype string (query)	s2:Sentinel-2 Level 2A, bs:S1 CARD Backscattering Coefficients, c6:S1 CARD 6-day Coherence, scl:Scene classification layer.	
	Available values : s2, bs, c6, sci	
ool	sz v	
string	Include scl in the s2 extraction, for use in cloud screening.	
(query)	Available values : True, False	
	Default value : True	
	True v	
ref	Include Sentinel image reference in time series.	
(query)	Available values : True, False	
	Default value : False	

Most common mistakes

- Wrong credentials host
 - Use the credentials that are send to you, username format "ms_name" e.g.: ie_john

Your user account for the development outreach RESTful API server has the following credentials:

https

Username: ms_username Password: PASSWORD

Host: https://cap.users.creodias.eu/

- Missing parameter
 - Some of the parameters are mandatory see:
 - https://cap.users.creodias.eu/apidocs
 - Data_access_information.pdf
 - https://jrc-cbm.readthedocs.io
- Wrong parameters data
 - To see the type of the parameter see:
 - https://cap.users.creodias.eu/query/info

Usage statistics

User activity (total 16):

- 3 active users
- 5 occasionally connected
- 8 non active users
- 4 downloaded the example files

Endpoint	Today	Last 7 days	Overall	Last requested
parcelTimeSeries_query	26 ²	6,675 ¹²	48,341	10 minutes ago
parcelById_query	9	4,268 ³	14,494	27 minutes ago
rawChipByLocation_query	0	70 ¹	558	13 hours ago
rawS1ChipsBatch_query	0	0	240	1 week ago
rawChipsBatch_query	2	46	199	5 hours ago
backgroundByID_query	1	1	78	1 hour ago
download_files	0	19 ¹⁷	53	21 hours ago
backgroundByLocation_query	0	1	43	3 weeks ago

CbM git repository https://github.com/ec-jrc/cbm

- Files to create a RESTful API for cbm with Flask
- cbm python package at Python Package Index (PyPI)
 - pypi.org/project/cbm Installable with: pip install cbm
- Docker images source files.
 - Available on Dockerhub: <u>hub.docker.com/u/gtcap</u>
- Documentation source files.
 - Can be viewed at: jrc-cbm.readthedocs.io
- Jupyter Notebook examples
- Python code packages for (scripts):
 - Signatures extraction
 - Calendar generation
 - Signal marker processing

Q&A

guido.lemoine@ec.europa.eu pavel.milenov@ext.ec.europa.eu csaba.wirnhardt@ec.europa.eu daniele.borio@ec.europa.eu ferdinando.urbano@ec.europa.eu gilbert-madalin.voican@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Signals and Signal Processing Part I Outreach Training

JRC D5 – GTCAP Team 19 Nov 2021

Joint Research Centre

Agenda

09:30 - 09:35	Welcome
09:35 - 10:20	Translating practice to signal behaviour
10:20 - 10:40	RESTful data access - refresh and updates
10:40 - 11:25	Signals and Signal Processing - Part I
11:25 - 11:40	Break
11:40 - 11:55	Signal and Signal Processing - Part II
11:55 - 12:25	Mowing Marker Detection
12:25- 13:00	Q&A, discussion

Outline

- Outreach data and signals
- Overall processing architecture
- Introduction to the signal and marker processing notebook
- Preliminary operations: SCL and cloud masking
- Index computation

Outreach Time Series (Recap.)

 Outreach database providing both S1 and S2 time series for a specific parcel through RESTful API

See pervious training ("Parcel time series processing from RESTful" presentation)

- Data directly imported into a data frame (get_time_series.py, available at (<u>https://github.com/ec-jrc/cbm/tree/main/ipynb/get_and_display_graphs_from_restful</u>)
- Data aggregated at the parcel level: **spatial dimension summarized by statistics**
- Six Sentinel 2 bands: RGB (B02, B03, B04), Vegetation Red Edge (B05), NIR (B08) and SWIR (B11) + SCL Histogram
- Sentinel 1 backscattering (BS)
- Sentinel 1 coherence (COH)

Sentinel 2 Time Series (Recap.)

Summary statistics: mean, std, min, p25, p50 (median), p75 and max

date part	band	count	mean	std	min	p25	p50	p75	max	hist	reference
1.500520+09	B08	1501	4197.11	232.009	2932	4050	4240	4350	4600	{'8': 11, '10': 363}	S2B_MSIL2A_20171018T105029_N0213_R051_T
1.50832e+09	B11	374	2358.32	88.5482	2153	2319.25	2359	2411.5	2706	{'8': 11, '10': 363}	S2B_MSIL2A_20171018T105029_N0213_R051_T
1.5085e+09	B02	1496	287.156	45.5943	137	253	280	325	466	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B02	1501	288.348	44.3535	135	254	281	327	422	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B03	1501	664.264	81.3611	338	604	658	735	865	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B03	1496	669.844	77.3804	346	607	666.5	739	858	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B04	1501	323.527	76.6127	150	257	298	388	576	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B04	1496	323.457	76.4696	151	258	298	390	571	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B05	374	1158.14	118.699	913	1056.25	1159	1267.75	1418	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B05	374	1127.14	152.37	472	1035	1124	1261.75	1377	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B08	1496	4240.06	387.576	1782	4046	4332	4532	4964	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B08	1501	4184.81	538.329	837	3974	4328	4540	4920	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B11	374	2044.97	120.162	1485	1944	2090	2133.75	2253	{'4': 374}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.5085e+09	B11	374	2002.5	189.706	916	1908	2054	2130	2242	{'2': 1, '4': 370, '7': 3}	S2A_MSIL2A_20171020T104051_N0213_R008_T
1.50936e+09	B02	1496	228.511	40.5748	113	198	225	256	386	{'4': 374}	S2A_MSIL2A_20171030T104151_N0213_R008_T

Band pixel ID count

date

SCL histogram: very important for **cloud masking**

Sentinel 1 Time Series (Recap.)

Summary statistics: mean, std, min, p25, p50 (median), p75 and max

	dat	te 🗖	-po	lariza	tion					p	25, p50 (median), p7
₽	• • • • • • • • • • • • • • • • • • •	+			ts ·	- DataFram	e 🗸				- 3 ×
Index	date part	band	count	mean	std	min	p25	p50	p75	max	reference
0	2017-10-01 19:24:07.253000	VHc	374	0.28264	0.114438	0.0988338	0.195853	0.260804	0.348224	0.635668	S1B_20171001T172407S1A_201709
1	2017-10-01 19:24:07.253000	VVc	374	0.269746	0.114653	0.0681983	0.180861	0.248727	0.343244	0.678548	S1B_20171001T172407S1A_201709
2	2017-10-02 19:16:58.654000	VHc	374	0.282299	0.114625	0.0707441	0.193117	0.260035	0.35327	0.700599	S1A_20171002T171658S1B_201709
3	2017-10-02 19:16:58.654000	VVc	374	0.234647	0.0871028	0.0710124	0.169212	0.227802	0.289851	0.527861	S1A_20171002T171658S1B_201709
4	2017-10-17 07:41:04.677000	VHc	374	0.342551	0.131972	0.0940068	0.239121	0.329909	0.437564	0.73514	S1B_20171017T054104S1A_201710
5	2017-10-17 07:41:04.677000	VVc	374	0.306879	0.121104	0.0802913	0.20646	0.299938	0.400529	0.638715	S1B_20171017T054104S1A_201710
6	2017-10-19 19:24:56.733000	VHc	374	0.39713	0.130761	0.117515	0.29192	0.401801	0.490482	0.759323	S1A_20171019T172456S1B_201710
7	2017-10-19 19:24:56.733000	VVc	374	0.357152	0.131155	0.0885077	0.251636	0.34904	0.445421	0.767388	S1A_20171019T172456S1B_201710
8	2017-10-22 07:49:14.690000	VHc	374	0.355628	0.126638	0.122302	0.261541	0.338359	0.442863	0.743762	S1B_20171022T054914S1A_201710
9	2017-10-22 07:49:14.690000	VVc	374	0.319188	0.126346	0.0871159	0.215742	0.303597	0.409478	0.698883	S1B_20171022T054914S1A_201710
10	2017-10-28 07:49:40.164000	VHc	374	0.430743	0.145804	0.118591	0.317116	0.426368	0.534761	0.786101	S1A_20171028T054940S1B_201710
11	2017-10-28 07:49:40.164000	VVc	374	0.377902	0.132292	0.0787123	0.281223	0.379274	0.48074	0.716907	S1A_20171028T054940S1B_201710
12	2017-11-06 18:24:07.298000	VHc	374	0.428143	0.178086	0.0968409	0.289426	0.409734	0.545035	0.941684	S1B_20171106T172407S1A_201710
13	2017-11-06 18:24:07.298000	VVc	374	0.388754	0.18705	0.0577586	0.228105	0.363964	0.538154	0.826523	S1B_20171106T172407S1A_201710
14	2017-11-15 06:49:14.343000	VHc	374	0.457818	0.155104	0.0863861	0.344038	0.458728	0.559441	0.925407	S1B_20171115T054914S1A_201711
15	2017-11-15 06:49:14.343000	VVc	374	0.408224	0.136194	0.0568156	0.308051	0.418974	0.499824	0.770162	S1B_20171115T054914S1A_201711
16	2017-11-22 06:41:04.213000	VHc	374	0.494342	0.140627	0.0650546	0.403871	0.496248	0.598086	0.809128	S1B_20171122T054104S1A_201711
17	2017-11-22 06:41:04.213000	VVc	374	0.414909	0.14302	0.10279	0.306157	0.412272	0.528341	0.710297	S1B_20171122T054104S1A_201711

Similar data arrangement for COH and BS

Reference information

Save and Close Close

Format Resize 🗹 Background color 🗹 Column min/max

Overall Processing Chain (I/II)

Overall Processing Chain (II/II)

Commission

Get the Code

https://github.com/ec-jrc/cbm/scripts/signal_marker_processing/

" pr master → 🖓 1 branch 📀 0 tags	4	borioda Some minor changes. Added button to initiali	ze all elements. Plot loa	
feurbano Added functions in ts_data_	sources to	config	Some minor changes. Added	button to initialize all elements. Plot loa
notebook	Some [Jooce_notebook.ipynb	Some minor changes. Added	button to initialize all elements. Plot loa
Generate_Option_diagram.ipynb	Additio (C config.py	No commit message	
README.md	first wo	dd_widgets.py	No commit message	
data_displayer.py	Merge (🗅 dr_widgets.py	Fixed problems with the FileC	hooser and non-existing directories
🗅 data_sink.py	first wo	full_initializer.py	Some minor changes. Added	button to initialize all elements. Plot loa
generate_option_diagram.py	first wo	🗅 md_widgets.py	header> include_header in	empty "marker-sink"
geom_utils.py	+ Introd (pds_widgets.py	Fixed problems with the FileC	hooser and non-existing directories
get_time_series.py	added [pp_widgets.py	No commit message	
🗅 main.py	Some			
marker_aggregation.py	+ Introductio	on of a parcel data reader only from text file with list	25 days ago	
marker_utils.py	+ Introductio	on of a parcel data reader only from text file with list	25 days ago	
markers_processing.py	+ Introductio	on of a parcel data reader only from text file with list	25 days ago	European Commission

First Steps with the JRC Marker Processing Code

option file

simplified generation with a dedicated jupyter notebook

initialization of all code elements

- ▼ root:
- ▶ parcelSource:
- ► dataReaders: [] 2 items
- ▶ pre-processors: [] 4 items
- ▶ marker-detectors: [] 4 items
- marker-aggregator: [] 3 items
- > data-displayer:
- marker-sink: [] 2 items
- ▶ scenario-evidence:

main code processing of the full parcel population

Step 1: Parcel Data Sources

• Select the list of parcels to process: several options available

Parcel Data so	ources: () C C F	Text File Text File and R From SHAPE f	ESTful API File	
	\bigcirc	From GeoJSO	N File	
From Text File	only			
Select	No selecti	on		
🖺 Sa	ave			
Loa	ad	Select	No selection	

Step 2: Time Series Sources

- Instruct the code on how retrieve the time series (S1 and S2) for the different parcels
- Several options (including RestFul API)
- Preliminary operations to reshape the retrieved data (synchronous components)

outreach_bands	coh		
Data reader ty	pe: rest_s2		
Signal:	outreach_bands		
Options :			
API URL:	Add URL		SCL Mask:
API User:	capland		🔲 0 - No data
API Passw	•••••		1 - Saturated or Defective
Member St	nl		2 - Dark Area Pixels
Year:	2018	~	3 - Cloud Shadows
Туре:	m	~	4 - Vegetation
			5 - Not Vegetated
			🗌 6 - Water
			7 - Unclassified
			8 - Cloud Medium Probability
			🧹 9 - Cloud High Probability
			🗹 10 - Thin Cirrus
			11 - Snow

Output Signals and Components

- components

₽					outreac	h_bands ·	- DataFra	me						- 2
date part	302 mear	B02 std	cloud pct	303 mear	B03 std	304 mear	B04 std	305 mear	B05 std	308 mear	B08 std	311 mear	B11 std	tm numb∉
2019-10-03 12:50:31.024000	1947.46	448.136	100	2067.36	391.736	1873.27	388.374	2431.73	384.98	4093.37	264.185	2685.23	241.641	31
2019-10-05 12:40:29.024000	8246.43	456.923	100	7820.83	431.755	7461.76	406.651	7508.54	434.509	7424.2	402.686	4897.25	383.413	31
2019-10-08 12:50:29.024000	6792.73	143.305	100	6821.37	143.425	6748.53	141.039	6808.16	148.578	6740.07	131.865	3545.14	178.569	31
2019-10-10 12:40:31.024000	1343.91	1394.56	15.2174	1600.17	1275.64	1449.67	1237.06	2066.3	1121.08	4103.01	1012.67	2956.64	781.535	31
2019-10-13 12:50:31.024000	343.842	48.2673	O	692.251	70.17	601.607	86.0658	1210.12	91.0568	2920.76	241.013	2398.05	165.123	31
2019-10-15 12:40:29.024000	8480.47	58.4238	100	8181.25	51.3594	7953.38	43.8425	8150.35	34.18	8096.02	50.5254	1969.8	16.1301	31
2019-10-18 12:50:39.024000	5857.2	131.55	100	5431.53	222.416	5230.79	334.936	5602.83	396.111	5140.35	157.204	1557.68	230.027	31
2019-10-20 12:40:51.024000	11911.3	74.774	100	11617.8	66.8158	11268.3	70.2642	11824.8	66.5597	11625.3	67.5196	3762.41	41.8086	31
2019-10-23 12:51:11.024000	1212.38	34.7258	100	1426.63	39.0673	1266.37	47.8843	1792.32	56.8394	3239.45	152.954	2229.12	84.8739	31
2019-10-25 12:40:29.024000	10600.4	773.644	100	9659.92	744.833	8875.15	737.395	9108.47	796.313	8313.73	716.553	5238.92	734.859	31
2019-10-28 11:50:49.024000	142.15	30.1965	96.7391	251.93	41.5468	214.315	31.1006	408.728	42.1762	1093.89	108.498	578.228	61.691	31
2019-10-30 11:41:51.024000	6002.97	175.381	100	5915.33	144.459	5679.52	108.183	5870.45	84.8652	6712.5	137.667	3558.98	41.6066	31
2019-11-02 11:52:11.024000	10596.5	120.756	100	9829.16	107.021	9338.89	114.464	9508.36	124.087	9250.37	107.165	2170.39	54.2452	31
2019-11-04 11:41:19.024000	363.187	78.9823	6.5217	294.08	63.6354	182.449	47.3816	252.598	48.9279	470.401	107.956	146.75	40.3872	31
2019-11-07 11:51:39.025000	6838.86	786.705	100	6513.02	758.943	6312.7	728.163	6358.27	678.625	6301.69	780.124	2842.7	643.454	31
2019-11-09 11:42:51.024000	5151.12	365.346	100	4464.55	350.202	4062.2	346.43	4080.51	344.092	3824.8	358.468	2201.05	258.937	31
2019-11-12 11:53:01.024000	6301.07	565.946	100	6238.35	562.44	6353.72	595.443	6604.45	581.406	6679.97	636.955	2413.95	192.478	31
2019-11-14 11:42:09.024000	7078.37	197.871	100	6668	217.276	6545.26	258.154	6579	300.326	6311.58	191.911	3106.01	262.358	31
2019-11-17 11:52:29.024000	3507.27	54.4407	100	3300.4	51.4857	3133.26	41.619	3556.62	48.7317	4419.34	69.406	2106.91	27.5119	31

date!

ndvi_raw/iiitered	_bu8 con_compo	con_norm	Πανι	
Processing Li	ne			
Output na	coh_compo			
Processor typ	e: split			
Signals:	outreach_bands coh ndvi_raw	Components:	count VHc_mean VHc_std	
Options :	filtered_b08_b11_b04		orbit	
bv:	orbit	~		
Values:	Values			
Processor typ	e: interp			
Signals:	coh_1 coh_2	Components:	VHc_mean VVc_mean VHc_mean VVc_mean	
Options :				
method:	linear	×		
-				

From Tables to Plots

- S2 time series: highly correlated
- Cloud masking/filtering essential

018-07-01

Date

18-06-01

- BS: low variations expected during mowing
- COH: noisy

0.6

0.5

0.4

02

7018-05-01

Coherence

SCL Histogram and Cloud Masking

Blue Band Based Filtering

- SCL cloud masking could be insufficient (residual measurements corrupted by clouds, shadows and other artefacts)
- **Several approaches available** in the literature for further filtering observations:

can be easily implemented in the framework proposed

Kolecka et al. "Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series", Remote Sensing 2018

Based

remove
Index Computation

Dedicated pre-processor for the computation of indexes from the individual band values

1.0

0.8

0.6

0.4

0.2

0.0

2020-04-01

ndvi

2020

APR

B02 mean B03 mean B04 mean

B05 mean B08 mean B11 mean ndvi mean

2020-05-01

Summary

- Introduction to the general processing framework for time series and marker processing
- Preliminary operations on the time series before marker detection
- A few steps toward mowing detection

All the processing introduced: can be visualized as a processing diagram

Significant effort

invested in

flexibility:

daniele.borio@ec.europa.eu csaba.wirnhardt@ec.europa.eu guido.lemoine@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Signals and Signal Processing Part II Outreach Training

JRC D5 – GTCAP Team 19 Nov 2021

Joint Research Centre

Agenda

09:30 - 09:35	Welcome
09:35 - 10:20	Translating practice to signal behaviour
10:20 - 10:40	RESTful data access - refresh and updates
10:40 - 11:25	Signals and Signal Processing - Part I
11:25 - 11:40	Break
11:40 - 11:55	Signal and Signal Processing - Part II
11:55 - 12:25	Mowing Marker Detection
12:25- 13:00	Q&A, discussion

Outline

Final steps before marker detection

- NIR, SWIR and RED processing
- Signal resampling and interpolation
- Signal Smoothing
- Signal Combining

NIR, SWIR, RED False Color Composite

More information can be obtained (wrt to NDVI alone) by considering invidual bands

Compress the imagettes information in a **color bar**: **each point = "average" imagette color**

A human interperter can associate a grassland state to each color —— potential for classification approaches

ewa_2020a_5types_rnd_first_50.shp ogc_fid=4731

2020 JAN

2020 FEB

2020 MAR

2020 APR

2020 MAY

2020 JUN

Weel

1A

Week

1B

Week

2A

Week

2B

Week

3B

2020-06-21

3A

Week

4A

Week

4B

Magic LUT Stretching and Classification

False color composite of NIR, SWIR and RED: more details in pervious training on "Parcel time series processing from RESTful"

Stretching using an optimized LUT of these three band components

Same examples:

	maintained/mowed/grazed
	vegetated
	shadowed invalid

Information from the NIR, SWIR, RED color band can be used to further filter invalid observations and to confirm for example that an NDVI drop corresponds to a real mowing event

In the Notebook

Processor typ	e: lut_strect						IUT-	Stretchir	na for the	individual	
Signals: outreach_bands coh b08_b04_b11_ndvi			Components:	B08_mean B11_mean B04_mean			Doccibilit	v to cot	co	mponents	
	ndvi			ndvi			F055101111	y 10 Sel	the trans	somation	1
Options :											
min_val:	1200, 800, 150										
max_val:	5700, 4100, 2800	Processor typ	be: band_filter								
More co process on a loo classifi	omplex sing based cal ier (each	Signals:	outreach_bar	nds 🗸	Components:	B08_mean B11_mean B04_mean ndvi		PED.	B04 mean		
color as	sociated to		DU0_IIIeaII	•	Swin.	DII_IIIedII	•	RED.	D04_IIIeaII	•	
a difford	ont stata)	Options :									
Training NL data	g based on	excluded_c	cloudy hazy shady maintained vegetated (O)		-	Removal associate	of observed to the s	vations selected	d states		

Putting all Together

BS not considered for mowing

NDVI, COH components and stretched NIR, SWIR and RED on the same plot

Resampling and Interpolation

- to obtain uniformly sampled time series which allow simplified operations
- to use a **common time scale** between time series

coh_compo	coh_norm	ndvi_raw/band_valu	ue ndvi	band_compo		
Processing Li	ne					
Output na	band_compo					
Processor typ	e: interp					
Signals:	coh_norm ndvi_raw band_values band_classes ndvi	Components:	B08_mean B11_mean B04_mean			
Options :						
method:	nearest	✓ ← S	everal interpola	tion methods	supported	
Ts:	1	$\hat{}$				

Reduce the impact of noise and other high-frequency phenomena not corresponding to mowing

Processor typ	e: butter_smoother				
Signals:	linintorp	Components:	ndui maan		
	minucip				
Options :					
fc:	0.05	← C	cut-off frequency (Se	e previous training)	

Signal Combining (I/II)

Several time series may be used for marker detection
 effectively combine time series

Signal Combining (II/II)

- Flexibility to include new combining strategies: additional processors
- Norm normalization: coherence assumes values between 0 and 1. Constraints on the processing to preserve this conditions

 Combining may be needed for other signals (BS, S2 signals bands, etc.)

Signals:		Components:	
	coh_compo		coh_1_VVc_mean
			coh_1_VHc_mean
			coh_2_VVc_mean
			coh_2_VHc_mean
Options :			,
	🗹 normalize:		

Conclusions

- Signal for mowing detection: NDVI, individual bands (NIR, SWIR, RED), S1 coherence
- **Signal pre-processing:** important stage to reduce the impact of noise and artefacts
- Operations:
 - cloud masking/outlier removal
 - resampling/interpolation
 - smoothing (low-pass filtering)
- Object oriented framework for data loading, signal processing and marker detection

<image>

 Designed to be flexible and easily extendable

 GUI in a Jupyter notebook

... finally ready for actual Marker Detection

... Use Predefined Configuration Files

- configuration files with predefined processing options available
 - \rightarrow NDVI alone
 - → Coherence alone
 - → NDVI+Coherence
 - $\rightarrow \dots$

Simplified initialization through a single button Initialize all elements

Initialize All

daniele.borio@ec.europa.eu csaba.wirnhardt@ec.europa.eu guido.lemoine@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Mowing Marker Detection

Outreach Training

JRC D5 – GTCAP Team 19 Nov 2021

Joint Research Centre

Agenda

09:30 - 09:35	Welcome
09:35 - 10:20	Translating practice to signal behaviour
10:20 - 10:40	RESTful data access - refresh and updates
10:40 - 11:25	Signals and Signal Processing - Part I
11:25 - 11:40	Break
11:40 - 11:55	Signal and Signal Processing - Part II
11:55 - 12:25	Mowing Marker Detection
12:25- 13:00	Q&A, discussion

Outline

- Peak and Drop detectors
- State verification using a (NIR, SWIR, RED)-classifier
- Comparison with reference data
- Performance and marker parametrization

Basic Principles: S2 signals

- Mowing implies a significant reduction of biomass:
- direct impact on NDVI:
 expected significant drop
 'max-min-max'/'growth-cut-regrowth'
 pattern
 - → Detection of drops in the NDVI
- NIR, SWIR and RED false color composite: only greenish colors correspond to mowing states

use a classifier to associate states to the NIR, SWIR, RED color composite and confirm NDVI based detection

Basic Principles: S1 COH

Coherence should increase after a mowing event. Several approaches available in the literature (for instance Tamm et al. 2016)

Stable BS: not considered here

Detection of peaks in the COH norm

Process similar to the detection of drops in the NDVI: a peak becomes a drop is the original time series is multiplied by -1

Markers as Triangles

Conventional representation:

for NDVI: mowing date most likely between max1 and min1

> regrowth phase: between min1 and max2

a new mowing activity cannot occur if the regrowth phase is not completed

similar considerations for COH

Triangle Aggregation

- Peak and drops detected by identifying local maxima and minima in the smoothed NDVI and COH curves
- There could be ambiguous situations: one or two markers?
- Possibility to aggregate "triangles"
- Aggregation criterion: angle between the two triangles

Drop and Peak Detectors

drop-detector						
Processor typ	e: drop-detector					
Signals:	band_values					
	band_classes					
	ndvi					
	band_compo					
	coh_smooth					
Start date:	04 / 01 / 2018	\otimes	Stop date:	10/31/2018	8	
Options :						
min_duration:	7	\$				
min_drop:	0.1	\Diamond				
	filter_by_angle:					
aggregate:	2	\diamond				

Comparison with Reference Data

- Very flexible framework for marker detection: to be tuned to local conditions
- One solution will work for a MS and fails for another

Comparison with reference data: to determine the **best solution** for a specific scenario/MS

- Performance evaluation: could be challenging due to uncertanties in the reference data
- **E.g./** Did the event really occur?
- Uncertanities in the dates of the event (reference data) and markers (automatic detection)

Some Examples: CZ 2020

 NDVI drop markers effective in reveling the mowing activity

 Moderate numbers of NDVI data gaps

 COH: can have oscillations leading to false alarms

Some Statistics: CZ

- Results obtained without proper marker parametrization
- No marker combining implemented
- Only 25 parcels considered for the analysis

Detection probabilities determined by **requiring a match** between the **dates** of **reference event** and the **marker dates**

Relaxed problem

Probability that at least one mowing event is correctly identified in a parcel during the season

N	DVI	СОН			
Missed Detection Detection			Missed Detection Detection		
38.46 %	61.54 %		14.29 %	85.71 %	

Small parcels (0.08ha), end-of-season events, ...

NDVI

Missed Detection	Detection
5%	95%

Some Statistics: LV

.

- Sentinel 1 Extra Wide Swath Mode (EW) early and late in the year constrains the COH-based analysis
- Usage of COH to be carefully evaluated for the specific cases (parcel size and shape)

 Further investigations needed to determine root causes for low COH detection rates

date matching: hard requirement

NL		COH		
Missed Detection	Missed Detection Detection		Missed Detection	Detection
16%	84 %		64%	26 %

uncertanities in the event/marker dates can lead to very conservative detection results

Q uncertanities example)ate

Outreach: Next Phase

- Need for carefull signal selections according to local conditions
- Pre-determined parameters must be fine tuned to specific local conditions (min/max event durations, drop/increase in NDVI/COH)
- Additional parameters could be defined and introduced
- Full potential of the tool: calibration/validation effort required
- Performance analysis: to be assessed with respect to the actual problem:

Was mowing performed at least once in the season?
 How many mowing activities were performed?
 What are the mowing dates?

Outreach: Next Phase

- Call for MS interested and willing to participate in this next phase
- Require closer and active involvement from MS
- MS will need to test parameter settings in their context and find the configuration that work best for their specific case.

Python framework and Jupyter notebooks for mowing and marker detection

Code available at: <u>https://github.com/ec-jrc/cbm/</u>

daniele.borio@ec.europa.eu csaba.wirnhardt@ec.europa.eu fernando.sedano@ec.europa.eu guido.lemoine@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

