agenda	2
1_CbM_Frontend_20210722_Outreach_rep	3
2_CbM_Frontend_20210930_Data_access_rep	15
3_CbM_Frontend_20210930_Chips_rep	40
4_CbM_Frontend_20210930_marker_analysis_rep	63
5_CbM_Frontend_20210930_FOI_session_rep	76
6_CbM_Frontend_20210930_ML_rep	
7_CbM_Frontend_20210930_mowing_rep	93
8_CbM_Frontend_20210930_next_steps_rep	109

Webinar on DIAS for CbM Outreach - Session 3 - repetition

Date: Friday, 30th September 2021

Agenda

09:30 - 09:45 Welcome and short introduction into the JRC-CbM frontend (Guido Lemoine, JRC)

09:45 - 10:15 Frontend data access: Direct DB + RESTful access (hands on) (Konstantinos Anastasakis, JRC)

10:15 - 10:45 Basic data use: selection and visualization (hands on) (Csaba Wirnhardt, JRC)

10:45 - 11:00 Break

11:00 - 11:30 Data interpretation for marker analysis (hands on) (Guido Lemoine, JRC)

11:30 - 12:30 Thematic use cases: FOI, ML and mowing (hands on) (Gilbert Voican, Pavel Milenov, Guido Lemoine, Daniele Borio, JRC)

12:30 - 12:45 Q&A, next steps and discussion (Guido Lemoine, JRC)

CbM on DIAS: the jrc-cbm frontend

On-line training for Outreach, 30 September 2021

JRC D5 – GTCAP Team

Agenda

09:30 - 09:45	Welcome and short introduction into the jrc-cbm frontend
09:45 - 10:15	Frontend data access: Direct DB + RESTful access (hands on)
10:15 - 10:45	Basic data use: selection and visualization (hands-on)
10:45 - 11:00	Break
11:00 - 11:30	Data interpretation for marker analysis (hands on)
11:30 - 12:30	Thematic use cases: FOI, ML and mowing (hands on)
12:30 - 12:45	Q&A, next steps and discussion

Agenda

09:30 - 09:45	Welcome and short introduction into the jrc-cbm frontend
09:45 - 10:15	Frontend data access: Direct DB + RESTful access (hands on)
10:15 - 10:45	Basic data use: selection and visualization (hands-on)
10:45 - 11:00	Break
11:00 - 11:30	Data interpretation for marker analysis (hands on)
11:30 - 12:30	Thematic use cases: FOI, ML and mowing (hands on)
12:30 - 12:45	Q&A, next steps and discussion

Welcome

- An introduction to the jrc-cbm **frontend** implementation on DIAS.
- An (adapted) repetition of the July 22 webinar. Integrates actual Outlook data.
- Please use the chat for questions during the sessions. Audio & Video during Q&A.
- Remember to switch off video (save bandwidth) and mute audio, when not speaking.
- We do **NOT** record this webinar. All materials will be made available.

Audience

- For data analysts and users at the Paying Agency:
 - Data retrieval from DIAS backend
 - For analysis and marker development
 - "Traffic light" management decisions
 - Reporting
 - Links to schemes and agricultural practice
 - $\circ~$ Issues, caveats to be aware of

Context

- Checks by Monitoring introduces continuous use of Sentinel data streams for 100% of the Member State territory.
- Copernicus DIAS advantages:
 - Access to a **consistent**, **complete** Sentinel data archive (push, not pull)
 - Provision of on-demand standard CARD processing
 - Access to compute resources that can (temporarily) scale to needs
 - Based on **open industry standards**, core open source modules
- Facilitates the needs for TAILORED automated processing.
- Provides access to standard "data reductions" (time series, image extracts)

m Sentinel-2 @ DIAS p Sentinel-1 @ DIAS

n-m, n-p*2 spatial time series for Sentinel-1, -2 CARD for b bands (b=14 (S2), 2 (S1)) x 100 for whole EU

2020-06-06

2020-06-19

Backend take home messages

- The backend is the core jrc-cbm component for server-side requirements
- The backend does the processing heavy-lifting to provide consistent access to CARD data and their parcel reductions
- Backend operation requires expertise in cloud compute, Big Data Analytics
- Backend functionalities and performance focuses on common needs
- Backend development may be impacted by Copernicus programme decisions (e.g. ARD production) and adoption of novel approaches (k8s, dask, GPU)
- Backend server components provide access to the data via standard APIs
- The frontend "consumes" the backend data to support typical PA functions.

Technical choices

- jrc-cbm is designed on a cloud centric basis (but can also run stand-alone)
- all programming in python, mostly as syntactic glue
- using mature modules
- PostgreSQL/Postgis for (spatial) data management on backend.
- Linux (Ubuntu) bash scripting for orchestration, parsing, conversion (gdal)
- The backend server components provide the "end-points" to retrieve data.
- Frontend users do not require (extensive) backend expertise
- All maintained and documented on <u>github.com/ec-jrc/cbm</u>
- Licensed under BSD Clause 3 (facilitates maximum re-use)

Open Source software components used

CbM on DIAS: Frontend data access

On-line training for Outreach, 30 September 2021

JRC D5 – GTCAP Team

Agenda

09:30 - 09:45	Welcome and short introduction into the jrc-cbm frontend
09:45 - 10:15	Frontend data access: Direct DB + RESTful access (hands on)
10:15 - 10:45	Basic data use: selection and visualization (hands-on)
10:45 - 11:00	Break
11:00 - 11:30	Data interpretation for marker analysis (hands on)
11:30 - 12:30	Thematic use cases: FOI, ML and mowing (hands on)
12:30 - 12:45	Q&A, next steps and discussion

CbM Frontend data access

- Data Access
 - **RESTful API**
 - Data Exports
- Jupyter Notebooks
- Examples
- CbM git repository
- Links

CbM data access

RESTful API

RESTful API Requirements:

- RESTful account from JRC
- Basic programing knowledge*

JRC does not provide direct database access

Data Exports

Alternative data access Requirements:

- Extracted data from JRC database
- A Postgres database server with PostGIS
- Good backend server management skills
- Good programing skills

RESTful APIs

Advantages:

- Provides predefined simplified functionalities to extract data based on a controlled set of parameters
- Ensures performance and security by preventing poorly designed resource-intensive queries and by adding other functionalities.
- Facilitates access to basic users with limited technical knowledge
- Simplifies the back-end management

RESTful API data view methods

③ 185.178.85.7/query/parcelTimeSerie	es?aoi=hr&year=2020&pid=897&ptype=g&tstype=s2
	Sign in http://185.178.85.7 Your connection to this site is not private Username Password Cancel Sign in

Set up the timeseries request

url = """http://0.0.0.0/query/parcelTimeSeries?aoi=a&year=2020&pid=123&tstype=s2"""
requests.get(url, auth = (username, password))

🛅 Empty temp folder			
	Your temp folder	'temp/' has old files:	'['test2019', '.ipynb_c
DataSource	General		
RESTful API Setting	S.		
API URL: http	://185.178.85.226	Format: http://0.0.0.0/ or h	https://0.0.0.0/
API User: CA	PLAND		
API Passw	•••••		

From the web browser

• Use of non Interactive scripts

Interactively GUI within Jupyter
 Notebooks

Jupyter Notebooks

https://jupyter.org/try

Files Running Clusters			
Select items to perform actions on them.		Upload New - 2	
0 - 1		Name 🍁 Last Modified File size	
🗇 🗅 clam		23 days ago	
C C config		4 days ago	
🗆 🗅 data		a month ago	
Co eodag		13 days ago	
codag_workspace		5 days ago	
eodagworkspace		4 days ago	
C D extracts		14 days ano	
🗆 🖸 sal 🗭 File Edit '	few Run Kernel Tabs Sett	zings Help	
0 D sec 🖿 🛨	no ± c 💌	K BIX EIX EIX BIX EIX BIX BIX BIX BIX BIX EI	× E:×
C temp	0	+ 🛠 🖞 🖻 🕨 🗉 C 👐 Markdown 🗸	P)
. # 104 ot O		20.40	
C @ tuto_be	Last Mullford		
Untitled	a month app	EU SCIENCE HUB	
🖿 api	a month ago	Twiteren The European Commission's science and knowledge ser	vice
🗢 💼 chm	a month ago		
docker	a month ago		
	a month ago	Jupyter notebooks interactive widgets for C	CbM
in docs		linuchm!	
docs ipynb	21 hours ago	IDYCDIII	
in docs in ipynb in scripts	21 hours ago a month ago	русын	
ipynb scripts tests	21 hours ago a month ago a month ago	This file is part of CDM (https://github.com/ec-jrc/cbm).	
Bit docs Bit pynb Bit scripts Bit tests Ys _config.ys	21 hours ago a month ago a month ago 31 a month ago	This file is part of CDM (https://github.com/ec-jrc/cbm). Copyright : 2021 European Commission, Joint Research Centre	
B docs pynb scripts tests Ys_conflg.yp LICENISE	21 hours ago a month ago a month ago xi a month ago a month ago	This file is part of CDM (https://github.com/ec-jrc/cbm). Copyright : 2021 European Commission, Joint Research Centre License : 3-Clause BSD	
b docs ipynb scripts tests Ys _config.yy D. LICENSE MANIFES MANIFES	21 hours ago a month ago a month ago a month ago a month ago	This file is pert of CMI (https://github.com/ec-jrc/cbm). Copyright 1 2021 European Commission, Joint Research Centre Lienne : 3-Clause 80 The eyethen subpackage of the mufron bitary zerovides an easy way to get and view dat	ta with the
docs typh scripts tests Y1_config.y1 LICENSE D_MANIFES V RADNE	21 hours ago a month ago a month ago a month ago a month ago a month ago	This file is part of CDM (https://github.com/ec-jrc/cbm). Copyright : 2021 European Commission, Joint Research Centre License : 3-Clause BSD The Hychm subpackage of cbm python likray provides an easy way to get and view do use of python widghts for neetbooks, nowspace, sub known as payter weight	ta with the gets or simp
docs iii gymb iii scipts iii texts V ₁ _contry D_LICENSE D_MANIFES V README III TEXTER	21 hours ago a month ago a month ago a month ago a month ago a month ago a month ago	This file is part of CMM [https://github.com/ec.jrc/dm]; Copyright : 2021 European Commission, Joint Research Centre License : >-Clause BSD The byckme subgackage of charge BSD The byckme subgackage of charge to python Brany provides an easy way to get and wee dat use of python wedgets for romebooks 'pywkaget, also known as kypter-emb	ta with the gets or simp
■ docs ■ synb ■ solges Yconfig y U LICENES ● RRADAME ● requirement ● setup py	21 hours ago a month ago 23 days ago	Hysconn This file is part of CMM [https://github.com/ec-jrc/cbm]; Copyright : 2021 European Commission, Joint Research Centre License : >-Clause BD The ipychen subgrachen of the python Reary provides an easy way to get and wee dat use d python widgers for romethouse's ipywedgets, who known as python-wedge widgets, we hieracher HTML widgets for Jupyer-widg widgets, we hieracher HTML widgets for Jupyer notebooks and the iPython kennet. Igychen hickles the Moleway main functions:	ta with the gets or simp

Jupyter Notebooks are documents that contain live code, equations, visualizations and narrative text.

Why Jupyter Notebooks:

- Open-source
- Exploratory Data Analysis (EDA)
- Easy Caching In Built-In Cell
- Language Independent
- Data Visualisation
- Live Interactions With Code
- Documenting code samples
- Extensible

0

≣

*

/ cbm /

_layouts

۸

Name

💼 api

b cbm docker

docs

ipynb 🖿 scripts

tests

М

Simple

Y: _config.yml

A MANIFES...

requireme...

setup.py

README....

□ LICENSE

Help

🗏 t 🗙 ≣r× ≣ (× 🔼 1× ≣ (× \$_ **⊺**× 🔼 i 🗙 📕 4 🗙 🔼 3 🗙 ≣ι× ≣ s× ≣ (× Python 3 () Markdown ~ EU SCIENCE HUB The European Commission's science and knowledge service

Jupyter notebooks interactive widgets for CbM 'ipycbm'

This file is part of CbM (https://github.com/ec-jrc/cbm). Copyright : 2021 European Commission, Joint Research Centre : 3-Clause BSD

The ipycbm subpackage of cbm python library provides an easy way to get and view data with the use of python widgets for notebooks 'ipywidgets'. ipywidgets, also known as jupyter-widgets or simply widgets, are interactive HTML widgets for Jupyter notebooks and the IPython kernel.

Description

Mode: Command

ipycbm includes the following main functions:

Panels

	-	_	-		
1	ŝ	7	1 0F	Python 3 I Idle	

a month ago

a month ago

23 days ago

Use Ln 1, Col 1

ipycbm.ipynb

 \otimes

°<u>~</u>

RESTful Access with Notebooks

- []: # install cbm python package !pip install cbm
- [6]: import cbm
- []: cbm.set_api_account("http://185.178.85.7/", "YOUR_Username", "YOUR_Password")
- [2]: cbm.show.time_series.ndvi('ms', '2020', '12345')

RESTful queries

- Parcel information
 - parcelByLocation, parcelByID
- Parcel signatures time series
 - parcelTimeSeries
- Parcel sentinel images
 - chipByLocation, rawChipByLocation
- Parcel orthophotos
 - backgroundByLocation, backgroundByParcelld
- Parcel peers
 - parcelPeers

RESTful API requests structure

RESTful - Parcel information

- parcelByLocation
 cap.users.creodias.eu/query/parcelByLocation?aoi=AA&year=2020&lon=6.32&lat=52.34
- parcelByID

cap.users.creodias.eu/query/parcelById?aoi=AA&year=2020&pid=123&withGeometry=True

		Parameters	Туре	Description		
(aoi		String 2 - 5 characters	Area of Interest		
	year		4 digits int	The target year		
mandatory <	•	lon/ lat	Float	Longitude and latitude in decimal degrees		
	•	pid	String	ID of the parcel that has to be retrieved		
<i></i>	with	Geometry=True	True or False (default)	Adds the geometry		
optional <	ptyp	е	g,m,n. etc.	parcels dedicated to different analyses		

RESTful USE

Get parcel information:

cap.users.creodias.eu/query/parcelById?aoi=ms&year=2020&pid=1234&withGeometry=True

Notebook [2]: import cbm cbm.get.parcel info.by pid('nld', 2019, 575541, True) [2]: {'ogc fid': [575541], 'cropname': ['Grasland, blijvend'], 'cropcode': [265], 'srid': [28992]. 'geom': ['{"type":"MultiPolygon","crs":{"type":"name","properties":{"name":"EPSG:28992"}},"coordinates":[[[96576.009,417328.430199999],[96574.206300002,417366.527],[96 572.206999998,417375.69],[96571.040800002,417391.0174],[96571.374000002,417396.6818],[96575.705699999,417414.175],[96578.3713,417432.334600002],[96688.661499999,417434.6 67], [96689.6611,417427.5031], [96690.993900001,417375.523400001], [96692.9932,417375.523400001], [96691.827,417434.167199999], [96695.159000002,417435.5], [96758.301,417435.9], [96758.301,417455.9], [96758.301,417455.9], [96758.301,417455,417456,417455,417455,417455,417455,417455,417455,417455,417455,417455 998],[96795.286499999,417436.832800001],[96800.2846,417436.499600001],[96803.616599999,417433.834],[96803.9498,417421.6721],[96804.9494,417376.189800002],[96806.28220000 1,417369,525800001],[96805,4492,417363,694699999],[96805,949,417336,372099999],[96804,283,417333,04],[96803,350099999,417333,450100001],[96782,7914,417332,207],[96738,14 22,417331.374],[96589.866799999,417328.5418],[96576.009,417328.430199999]]]]}'], 'area': [23898.22330816267], 'clon': [4.542926127180021], 'clat': [51.74211190705306]}

Browser

RESTful - Parcel Time Series

• parcelTimeSeries

cap.users.creodias.eu/query/parcelTimeSeries?aoi=AA&year=2020&pid=123&tstype=s2

RESTful - Parcel Time Series examples

Get parcel Time series:

cap.users.creodias.eu/query/parcelTimeSeries?aoi=ms&ye ar=2020&pid=1234&tstype=s2

Notebook

[2]:

Browser

÷		Cí	ን 🚺	Not sec	ure 1	85.178.8	5.7/	query/par		eSeries?a	ioi=hr&y		0&pid=8	97&pty	/pe=g&tsty	/pe=s2					
{"da	te dai	rt": [15	70269	031.024. 1	570269	031.024	, 157	0269031.0	024, 15	70269031	1.024, 15	7026903	1.024. 1	57026	9031.024.	157070	1029.02	25, 15	70701029.	025, 15	70
1570	070102	29.025	, 15707	701029.02	5, 1570	701029.0	025,	15711330	31.024,	1571133	031.024,	157113	3031.02	4, 1571	133031.02	4, 157	1133031	1.024,	15711330	31.024,	15
157	56502	29.024	, 15715	65029.02	4, 1571	565029.0	024,	15715650	29.024	, 1571565	5029.024	, 157199	7061.02	4, 1571	997061.02	4, 157	199706	1.024,	15719970	61.024,	, 1
157	19970	61.024	, 15724	129039.02	4, 1572	429039.0	024,	15724290	39.024	, 1572429	039.024	, 157242	9039.02	4, 1572	2429039.02	4, 157	286112	1.024,	15728611	21.024,	1
1572	286112	21.024	, 15728	61121.02	4, 1572	861121.0	024,	157329308	39.024,	1573293	089.024,	157329	3089.02	4, 1573	293089.02	4, 157	3293089	9.024,	15732930	89.024,	1
1573	37251	71.024	, 15737	25171.02	4, 1573	725171.0	024,	15737251	71.024	, 1573725	5171.024	, 157415	7129.02	4, 1574	157129.02	4, 157	415712	9.024,	15741571	29.024,	, 1
1574	15712	29.024	, 15745	589211.02	4, 1574	589211.0	024,	15745892	11.024,	1574589	211.024,	157458	9211.02	4, 1574	589211.02	4, 1575	5021169	9.024,	157502116	59.024,	15
1575	502116	59.024	, 15750	21169.02	4, 1575	021169.0)24,	157545324	41.024,	1575453	241.024,	157545	3241.02	4, 1575	453241.02	4, 157	545324	1.024,	15754532	41.024,	1
1575	588518	89.024	, 15758	85189.02	4, 1575	885189.0	024,	15758851	39.024	, 1575885	5189.024	, 157631	7241.02	4, 1576	5317241.02	4, 157	631724	1.024,	15763172	41.024,	, 1
1570	531724	41.024	, 15767	49199.02	4, 1576	749199.0	024,	15767491	99.024	, 1576749	0199.024	, 157674	9199.02	4, 1576	5749199.02	4, 157	718126	1.024,	15771812	61.024,	, 1
157	718120	61.024	, 15771	81261.02	4, 1577	181261.0	024,	15776131	99.024	, 1577613	3199.024	, 157761	3199.02	4, 1577	7613199.02	4, 157	761319	9.024,	15776131	99.024,	, 1
1578	304524	41.024	, 15780	045241.02	4, 1578	045241.0	024,	15780452	41.024	, 1578045	5241.024	, 157847	7189.02	4, 1578	3477189.02	4, 157	847718	9.024,	15784771	89.024,	, 1
1578	347718	89.024	, 15789	09231.02	4, 1578	909231.0	024,	15789092	31.024	, 1578909	231.024	, 157890	9231.02	4, 1578	3909231.02	4, 157	934114	9.024,	15793411	49.024,	1
1579)34114	49.024	, 15793	341149.02	4, 1579	341149.0)24,	157977319	91.024,	1579773	191.024,	157977	3191.02	4, 1579	773191.02	4, 157	977319	1.024,	15797731	91.024,	1
1580)2051	09.024	, 15802	205109.02	4, 1580	205109.0	024,	15802051	09.024	, 1580205	5109.024	, 158063	7141.02	4, 1580	0637141.02	4, 158	063714	1.024,	15806371	41.024,	, 1
1580)63714	41.024	, 15810	69059.02	4, 1581	069059.0	024,	15810690	59.024	, 1581069	059.024	, 158106	9059.02	4, 1581	069059.02	4, 158	150108	1.024,	15815010	81.024,	, 1
158	150108	81.024	, 15815	601081.02	4, 1581	501081.0	024,	15819330	29.024	, 1581933	8029.024	, 158193	3029.02	4, 1581	1933029.02	4, 158	193302	9.024,	15819330	29.024,	, 1
158	23650.	21.024	, 15823	365021.02	4, 1582	365021.0	024,	15823650	21.024	, 1582365	021.024	, 158279	7029.02	4, 1582	2797029.02	4, 158	279702	9.024,	15827970	29.024,	, 158
158	27970	29.024	, 15832	29031.02	4, 1583	229031.0	024,	15832290	31.024	, 1583229	031.024	, 158322	9031.02	4, 1583	3229031.02	4, 158	366102	9.024,	15836610	29.024,	, 158
158	366102	29.024	, 15836	061029.02	4, 1583	661029.0	024,	15840930	31.024	, 1584093	3031.024	, 158409	3031.02	4, 1584	1093031.02	4, 158	409303	1.024,	15840930	31.024,	, 156
1584	15250.	29.024	. 15845	525029.02	4. 1584	525029.0	024.	15845250	29.024	. 1584525	029.024	. 158495	7031.02	4.1584	1957031.02	4. 158	495703	1.024.	15849570	31.024	.15

RESTful - Parcel Sentinel images

• rawChipByLocation

cap.users.creodias.eu/query/rawChipByLocation?lon=1.23&lat=1.23&start_date=2019-0601&end_date=2019-06-30&band=B04&chipsize=2560

Parameters	Format	Description
lon, lat	a string representing a float number	Any geographical coordinate where Level-2A Sentinel-2 is available
start_date, end_date	YYYY-mm-dd	Time window for which Level-2A Sentinel-2 is available (after 27 March 2018)
band	Bn1	Sentinel-2 band name. One of ['B02', 'B03', 'B04', 'B08'] (10 m bands) or ['B05', 'B06', 'B07', 'B8A', 'B11', 'B12', 'SCL'] (20 m bands).
chipsize	string	Defaults to '1280'. Cannot be larger than '5120'
plevei	string	'LEVEL2A' (default), 'LEVEL1C'. Use LEVEL1C where LEVEL2A is not avaiable

RESTful - Parcel Sentinel images

View Data	Help	Settings		Notebook
Select a stored par Select folder: • T	rcel to display. Temporary folder: 'tmp/'. Personal data folder: 'data/'			NOLEDOOK
Select tabe: e:	s_ns2019	✓ Selection method: ●	Single parcel selection. Multiple parcels selection.	
Select view option	arcel_34296	~		
Code	Time series	Chip images	Show on map	
Crop name: 0	Select band: True DRDI, Area: 82	e color VISI e color Id SCL	how parcel	Cloud free
2019-04-	ol Bai Bai Bai	la B03 la B04 la B02	2019-04-13	2013-04-16
2019-04-	21	2013-04-26	2019-05-01	2019-05-06
2019-05-		2019-05-16	2019-05-26	2019-05-33

Browser

RESTful - Parcel orthophotos

- backgroundByLocation
 cap.users.creodias.eu/query/backgroundByLocation?lon=1.32&lat=1.34&chipsize=512&exten
 d=256.0
- backgroundByParceIID
 cap.users.creodias.eu/query/backgroundByParceIID?aoi=MS&year=2020&pid=1234&chipsize
 =512&extend=256.0

Parameters	Format	Description
lon, lat	a string representing a float number	Any geographical coordinate
chipsize	integer	The size of the chip image
extend	float	the effective resolution of the chip is extend/chipsize
tms	string	Google (default), Bing or MS orthophotos
ptype	g,m,n. etc.	parcels dedicated to different analyses

RESTful USE

Get parcel's orthophotos

cap.users.creodias.eu/query/backgroundByLocation?lon=6.32&lat=52.34&chipsize=512&extend=256.0

dump/62_74_7_192E6_32N52_34_512_256_0_Google/google.tif

cbm.ipycbm Examples

[]: from ipych	cbm import ipycbm om.config()	ipycbm.config()		
💼 Empty temp fo	older Your temp folder	'temp/' has old files: '['test2019', '.ipynb_che		
DataSource	General			
Data sources: RESTful API to Com. O Direct access to database and object storage. RESTful API Settings.				
API URL:	http://185.178.85.226	Format: http://0.0.0/ or https://0.0.0/		
API User:	CAPLAND			
API Passw	•••••			
🖬 Sav	e			

CbM git repository

https://github.com/ec-jrc/cbm

api

cbm

docker

docs

ipynb

scripts

tests

- Files to create a RESTful API for cbm with Flask
- cbm python package at Python Package Index (PyPI)
 - pypi.org/project/cbm Installable with: pip install cbm
- Docker images source files.
 - Available on Dockerhub: <u>hub.docker.com/u/gtcap</u>
- Documentation source files.
 - Can be viewed at: jrc-cbm.readthedocs.io
- Jupyter Notebook examples
- Python scripts for signatures extraction and calendar generation

Flask

{} API

docker hub

Links to get started

- → CbM repository: <u>https://github.com/ec-jrc/cbm</u>
- → CbM Documentation: <u>https://jrc-cbm.readthedocs.io</u>
- → CbM Python library: <u>https://pypi.org/project/cbm</u>
- → CbM docker images: <u>https://hub.docker.com/u/gtcap</u>

Other technical information:

- Creating pull requests with an interactive way:
 - o <u>docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request</u>
- Using git guide non interactively:
 - <u>http://rogerdudler.github.io/git-guide</u>
- Google Python Style Guide:
 - https://google.github.io/styleguide/pyguide.html
- Markdown (.md) and reStructuredText (.rst) guides:
 - <u>https://www.markdownguide.org</u>, <u>https://docutils.sourceforge.io/rst.html</u>
- Jupyter Notebooks:
 - <u>https://jupyter-notebook.readthedocs.io/</u>
 - Jupyter Notebook CheatSheet: <u>Jupyter_Notebook_CheatSheet_Edureka.pdf</u>
- Get started with python:
 - <u>https://python101.pythonlibrary.org/</u>
 - https://www.programiz.com/python-programming/first-program
 - <u>https://realpython.com/tutorials/data-viz</u> <u>https://python-graph-gallery.com</u>
 - https://realpython.com/tutorials/machine-learning

RESTful API Access

Please submit name of one person responsible for data access via restful service. The account will be created for this profile.

Submission should me made via email to Rafał and Kostas:

rafal.zielinski@ec.europa.eu &

konstantinos.anastasakis@ext.ec.europa.eu

Q&A

guido.lemoine@ec.europa.eu pavel.milenov@ext.ec.europa.eu csaba.wirnhardt@ec.europa.eu daniele.borio@ec.europa.eu ferdinando.urbano@ec.europa.eu gilbert-madalin.voican@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Image chip extract processing

The "calendar view" use case

Parcel time series processing from RESTful

Csaba Wirnhardt DIAS frontend webinar, 30th September 2021

Joint Research Centre

CbM context

CbM main workflow:

- Batch extract of signatures for all parcels
- Automated processing of large volumes

But:

- Consulting individual cases (parcels) is important for:
 - Marker development (parametrisation)
 - Checking yellow cases detected by the automated procedure
 - Annual CbM Quality Assessment (used operationally by some MS)

Main characteristics of chip extract processing

- Standalone necessary python libraries: requests, geopandas, rasterio, matplotlib, osgeo, rasterstats, etc
- Based on these 3 RESTful services:
 - rawChipByLocation (<u>https://jrc-cbm.readthedocs.io/en/latest/api_imgs.html</u>)
 - rawChipsBatch and rawS1ChipsBatch (<u>https://jrc-cbm.readthedocs.io/en/latest/api_post.html</u>)
- Source code in cbm Git repository (<u>https://github.com/ec-jrc/cbm/tree/main/scripts/calendar_view_gui</u>)
- Documentation in cbm Git repository (<u>https://github.com/ec-jrc/cbm/blob/main/docs/uc_calendar.md</u>)
- Not a professional software proof of concept

Python Libraries for chip processing

Python libraries for **searching**, **downloading** and **processing** Sentinel-1 and Sentinel-2 data

4

Additional libraries for more specialized functions

Plot &

Save

A Typical Processing Loop

Modular libraries able to accommodate different needs

For each parcel:

1) Get list of images covering the parcel (in a specific date range)

2) Download all SCL imagettes or use SCL histogram from outreach database with RESTful

3) Filter list of imagettes to download (cloud information)(S2 only)

4) Download imagettes from different bands (e.g. S2: B04/Red, B08/NIR, B11/SWIR; S1: backscatter, coherence)

5) Processing: imagettes LUT stretch, NDVI/BSI calculation

6) Plotting and saving outputs

the code is general and can be easily adapted to work on geotiff downloaded from other sources

Chip extract processing GUI Run calendar view script

What to run?	Set dates	Vector/Output folder	Other parameters			
Force the use of SCL imagettes		Create NDVI in	magettes	Get coherence imagettes		
✓ Get and download band imagettes		Calendar view	of NDVI imagettes	Calculate coherence statistics		
Merge band imagettes		Calculate NDV	/I statistics	Create coherence graphs		
☑ LUT stretch magic		🔽 Create NDVI g	raphs	Get backscatter imagettes		
☑ Calendar view LUT magic		Create BSI im	agettes	Calendar view of backscatter		
LUT stretch dynamic		Calendar view	of BSI imagettes	Calculate backscatter statistics		
Calendar view LUT dynamic		Calculate BSI	statistics	Create backscatter graphs		
Calculate band statistics		Create BSI gra	aphs			
Create band graphs		Calendar view	of NDVI histograms			
		Calendar view	of Red-NIR scatterplot			
Select minimum		iimum		Select all		

https://github.com/ec-jrc/cbm/blob/main/scripts/calendar_view_gui/calendar_view_gui.ipynb

6

Output folder structure

Név	+ Kit.	Méret
^ []		<dir></dir>
[20_Grassland permanent]		<dir></dir>
[20_Grassland permanent_merged]		<dir></dir>
[20_Grassland permanent_merged_lut_mag	gic]	<dir></dir>
[20_Grassland permanent_merged_ndvi]		<dir></dir>
🦲 [ndvi]		<dir></dir>
🗀 [ndvi_graphs]		<dir></dir>
[ndvi_graphs_fixed_date_range]		<dir></dir>
[overview_jpg_half_weekly]		<dir></dir>
run_params_2021_07_21_09_09_19	json	1 371
log	txt	895
lut	txt	2 431

Live demo – minimum output

Név	+ Kit.	Méret
<u>د.</u>]		<dir></dir>
[1_Grassland permanent]		<dir></dir>
[1_Grassland permanent_merged]		<dir></dir>
[1_Grassland permanent_merged_lut_magic]		<dir></dir>
[1_Grassland permanent_merged_ndvi]		<dir></dir>
[1_Grassland permanent_s1_bs]		<dir></dir>
[1_Grassland permanent_s1_bs_rescale]		<dir></dir>
[1_Grassland permanent_s1_bs_rescale_lut]		<dir></dir>
[1_Grassland permanent_s1_coh6]		<dir></dir>
] [ndvi]		<dir></dir>
[ndvi_graphs]		<dir></dir>
[ndvi_graphs_fixed_date_range]		<dir></dir>
overview_jpg_half_weekly]		<dir></dir>
overview_jpg_half_weekly_ndvi]		<dir></dir>
[s1_bs]		<dir></dir>
[s1_bs_calendar_view]		<dir></dir>
[s1_bs_graphs_together]		<dir></dir>
[s1_coh6]		<dir></dir>
[s1_coh6_graphs_together]		<dir></dir>
run_params_2021_07_06_11_58_40	json	1 361
log	txt	2 164
lut	txt	5 977

- AACTCADAC terrach 2021 NC demonstral MILA

<u>Live demo</u> – reduced output

Live demo – full output

c:\Users\Csaba\ownCloud\GTCAP\agri_audit_support\fr\chips2019_new*.*				
↑ Név	Kit.	Méret		
企 口		<dir></dir>		
[640064_Soft winter wheat]		<dir></dir>		
[640064 Soft winter wheat merged]		<dir></dir>		
[640064_Soft winter wheat merged bare_soil_index]		<dir></dir>		
[640064_Soft winter wheat merged lut_dynamic]		<dir></dir>		
[640064_Soft winter wheat_merged_lut_magic]		<dir></dir>		
[640064_Soft winter wheat_merged_ndvi]		<dir></dir>		
[640064_Soft winter wheat_s1_bs]		<dir></dir>		
[640064_Soft winter wheat_s1_bs_rescale]		<dir></dir>		
[640064_Soft winter wheat_s1_bs_rescale_lut]		<dir></dir>		
[640064_Soft winter wheat_s1_coh6]		<dir></dir>		
[i] [band_graphs]		<dir></dir>		
[band_stats]		<dir></dir>		
[bare_soil_index]		<dir></dir>		
[bare_soil_index_graphs]		<dir></dir>		
[indvi]		<dir></dir>		
[indvi_graphs]		<dir></dir>		
[indvi_graphs_fixed_date_range]		<dir></dir>		
Coverview_hist_half_weekly]		<dir></dir>		
<pre>[interview_jpg_half_weekly]</pre>		<dir></dir>		
[overview_jpg_half_weekly_bare_soil_index]		<dir></dir>		
[overview_jpg_half_weekly_dyn]		<dir></dir>		
[overview_jpg_half_weekly_ndvi]		<dir></dir>		
[overview_scatter_half_weekly_fixed_scale_cumulative]		<dir></dir>		
[s1_bs]		<dir></dir>		
[] [s1_bs_calendar_view]		<dir></dir>		
[] [s1_bs_graphs_together]		<dir></dir>		
[] [s1_coh6]		<dir></dir>		
[] [s1_coh6_graphs_together]		<dir></dir>		
log	txt	2 993		
lut	txt	9 074		
run_params_2021_07_17_15_20_26	json	1 332		

Use of Sentinel-2 Level 2A Scene Classification Layer for cloud screening

Calendar view of S1 backscatter imagettes

VH Desc **VH** Asc VV Desc VV Asc Week 4B Week 4B gsaa_crop_en_6400 fid_int=640064 Soft_winter_wheat gsaa_crop_en_640 fid_int=640064 Soft winter wheat Week 4B Week 4A Week 4B giaa crop en 6400 Ed int=640064 Soft winter wheat 0 $\langle \langle \rangle \rangle$ $\langle \rangle$ \bigcirc \mathbf{i} 2019 JAN \mathbb{Z} $\langle \rangle$ $\langle \rangle$ 2019 JAN JAN 2019 JAN 2019 JAN 1 $\langle \rangle \rangle$ 2019 FEB \mathbf{Q} \mathbf{Q} **FEB** 2019 FEB 2019 FEB 2019 FEB Ŷ 1 V Q $\langle \rangle$ \mathbf{Q} $\langle \rangle$ $\langle \gamma \rangle$ MAR 2019 MAR 2019 MAR 2019 MAR 2019 MAR $\langle \langle \langle \rangle \rangle$ \mathbf{i} \mathbb{Q} \mathcal{X} $\langle \chi \rangle$ 100 APR 2019 APR 2019 APR 2019 APR 2019 APR $\langle \rangle$ $\langle \langle \rangle \langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle | \rangle |$ $\langle \langle \langle \rangle \rangle$ $\langle \rangle$ $\langle \rangle$ MAY 2019 MAY 2019 MAY 2019 MAY 2019 MAY $\langle \rangle$ Q $\mathbb{Z}/$ $\langle \rangle$ JUN 2019 JUN 2019 JUN 2019 JUN 2019 JUN - $\langle q \rangle \langle q \rangle$ $\langle \gamma \rangle \langle \gamma \rangle$ $\langle \rangle$ \mathbf{i} JUL 2019 JUL $\langle \rangle$ 2019 JUL 2019 JUL 2019 JUL $\langle \gamma | \gamma \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ AUG 2019 AUG 2019 AUG 2019 AUG 2019 AUG 42 1 2019 SEP X SEP 2019 SEP 2019 SEP 2019 SEP Ż 1 1 2 $\langle \rangle$ OCT 2019 OCT 2019 OCT 2019 OCT 2019 OCT European

13

Commission

Winter wheat

Fixed vs. dynamic LUT stretch

Sentinel-2 Level 2A data (in theory) represent Bottom of Atmosphere (BoA) reflectance

Applying fixed generic LUT (left image) for the whole season gives visually comparable representation

Applying dynamic LUT (right image) based on histogram calculated for the extent of the imagettes could give more contrast, but less comparable representation throughout the season

The importance of cloud filtering

NDVI for all images

Week 4B

Combined use of **NDVI** and **NDWI** temporal profiles for rice fields monitoring

 $NDVI = \frac{NIR - Red}{2}$ NIR+Red

SWIR – Red NDWI = SWIR+Red

Nice alignement of S1 and S2 signatures

DASO_gsaa_crop_name_en.shp FLIK_SCH=DEBYLI8563000049_1 Potatoes 2018-10-01	Week 1B 2018-10-04	Week 2A 2018-10-11	Week 2B 2018-10-14	Week 3A 2018-10-16	Week 3B	Week 4A	Week 4B	
2018 OCT								
2018 NOV				2018-12-18			2018-12-28	
2018 DEC							\square	
2019 JAN					2019-02-23		2019-02-28	
2019 FEB					2019-03-20		17	
2019 MAR				2019-04-17		2019-04-24		
2019 APR				2019-05-17		2019-05-24		
2019 MAY 2019-06-01	2019-06-06		2019-06-13			2019-06-26	2019-06-28	
2019 JUN 2019-07-03	2019-07-06				2019-07-23	2019-07-26		
2019 JUL 2019-08-02	2019-08-05					2019-08-25	2019-08-30	
2019 AUG	2019-09-04	2019-09-11		2019-09-16	2019-09-21		2019-09-29	
2019 SEP		R	2019-10-14	2019-10-16		2019-10-26	ĿŻ.	$\overline{}$
2019 OCT								
2019 NOV			2019-12-15	2019-12-18			2019-12-30	
2019 DEC				2020-01-17				
2020 JAN	2020.02.06	2020.02.08						
2020 FEB		STITE -						

Winter green cover

• Nov-Dec 2019 confirmed

- Green line and green strip: mean profile and standard deviation of silage maize parcels from declared GSAA in the country (could be restricted to neighbouring parcels)
- Purple: profile of current parcel

19

Parcel and time series information from RESTful api

- parcelById <u>http://185.178.85.7/query/parcelById?aoi=bewa&year=2020&pid=1917042726&withGeometry=True</u>
- parcelTimeSeries <u>http://185.178.85.7/query/parcelTimeSeries?aoi=bewa&year=2020&pid=1917042726&tstype=s2&scl=True&ref=True</u>
- Source code in cbm Git repository (<u>https://github.com/ec-jrc/cbm/tree/main/ipynb/get_and_display_graphs_from_restful</u>)

Conclusion

22

Use image chip extract processing:

- to check an individual parcel (eg. CbM QA) and elaborate observations
- to refine knowledge to define markers and then perform automatic processing of large amount of FOIs (without visualising them ...)
- to publish parcels' findings revealed by automatic processing

Thank you

csaba.wirnhardt@ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

CbM on DIAS: the jrc-cbm frontend

On-line training for Outreach, 30 September 2021

JRC D5 – GTCAP Team

Agenda

09:30 - 09:45	Welcome and short introduction into the jrc-cbm frontend
09:45 - 10:15	Frontend data access: Direct DB + RESTful access (hands on)
10:15 - 10:45	Basic data use: selection and visualization (hands-on)
10:45 - 11:00	Break
11:00 - 11:30	Data interpretation for marker analysis (hands on)
11:30 - 12:30	Thematic use cases: FOI, ML and mowing (hands on)
12:30 - 12:45	Q&A, next steps and discussion

Interpretation basics

- Agricultural practices lead to geometric or radiometric change at the surface
- Sentinel-1 and -2 detect the change in the (parcel averaged) time series
- And/or a change in the spatial variation within the parcel
- S1: measures in C-band ($\lambda \sim 5.5$ cm) and 2 polarizations (VV and VH)
- S2: measures in 10 spectral bands (4x VIS, 4x NIR, 2x SWIR)
- Nominally acquires every 6 (S1) and 5 days (S2)
- Overlapping orbits leads to more frequent S1 (than 6 days repeat)
- Cloud cover means less frequent S2 (than 5 days repeat)
- Actual acquisition frequency depends on latitude and prevailing weather

Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). *Remote Sens.* 2021, *13*, 2301. https://doi.org/10.3390/rs13122301

Data interpretation for marker analysis

- Frontend APIs provide access to extracted time series and chip sets
- Time series provide temporal dynamics, some spatial variation within parcel
- Statistics: mean, stdev, count, min, max, p25, p50, p75 (see FOI use case)
- S2 bands: [B02, B03, B04, B08], [B05, B11], S1 bands: [VV, VH]
- S2: meaningful (only) for cloud screened data: SCL histograms
- S1: we mix (overlapping) descending and ascending orbits, no systematic correction (yet) for terrain height variation (DEM!)
- Some signal variation is due to other than agri-practice (e.g. snow, frost, rain)

Interpretation basics

- Interpretation is based on understanding the physics behind signal detection!
- Both sensor characteristics and radiometric interactions with the "target"
- Translated into practical rules on expected detectability.
- S1: measures in C-band ($\lambda \sim 5.5$ cm) and 2 polarizations (VV and VH)
- S2: measures in 10 spectral bands (4x VIS, 4x NIR, 2x SWIR)
- S1: sensitive to **geometry** and **water content** of the **soil-canopy** (γ^0 , c6)
- S2: sensitive to reflectance properties of soil-canopy
- Remote sensing 101

Sentinel-2

- Sensitive to reflectance contrast of soil & canopy
- Sensitive to reflectance difference in canopy stages
- Surprisingly little added information in extra bands
- Clouds break temporal consistency

Sentinel-1 CARD-BS

- Sensitive to backscatter contrast of soil & canopy
- Sensitive to structural difference in canopy stages
- Parallel with S2 vegetation cover (e.g. VH/VV)
- Temporal consistency

Sentinel-1 CARD-COH6

- Sensitive to stability of scatters
- Sensitive to stable bare soil vs. canopies
- Sensitive to change in bare soil conditions

Sentinel-2

- Sensitive to timing of seasonal phenology
- Sensitive to vegetation removal
- Cloud cover may cause "events" to be missed

Sentinel-1 CARD-BS

- Sensitive to vegetation removal and emergence
- Sensitive to soil surface preparation
- Revisit matches agricultural practice dynamics (!)

Sentinel-1 CARD-COH6

- Sensitive to stable bare soil vs. canopies
- Sensitive to change in bare soil conditions

Signature basics

Sentinel-1 CARD-BS

- Flat signature for grassland
- Sparse vegetation leads to higher soil backscatter

Sentinel-1 CARD-COH6

- Sensitive to grass regrowth phase
- Sensitive to grass removal
- Less risk to miss "events"

inel time series for parcel 92883817 (Broad bean, fava bea, 21.04 ha)

"How does your FOI perform [with regards to heterogeneity] in it's temporal trajectory in hybrid HR Sentinel radiometric feature space?"

Sentinel ARD issues

- S-2: adjacent granules with 10% overlap, may be projected in straddling UTM
- This leads to data duplication, esp. for S-2 L2A (to be resolved in extract)
- S-2A and S-2B till suffer from systematic pixel shift (esp. older data)
- We do not calculate indices at parcel level, but from band means
- S1 CARD-BS/COH-6 has one or more empty lines between frames
- S1 CARD-BS is not yet "terrain flattened" (work in progress)
- Parcels with only NODATA are dropped, partial NODATA is not dropped

DIAS Tools for FOI analysis

FOI Group – GTCAP Team DIAS Front-end webinar, 30th September 2021

Joint Research Centre

Feature of interest (FOI) - principles

- It is the physical surface of the earth, where the specified practice is performed
 - Single unit of agricultural management
 - Has initially assumed perimeter from GSAA/LPIS
 - Acting as digital representation of the FOI (FOI_D)
 - Being the "spatial object" CbM operates with
- GSAA perimeter compared with captured one from Sentinels
- FOI >< GSAA AP can have **many-to-many** relationships
 - Key validity check in CbM

FOI generic workflow – the reductive approach

Example of non-uniform vegetation cover

VHR imagery 2019

Thematic raster file

Orthophoto 2020

Calcaric Leptic Regosols

BARLEY

Mean slope:

Interpretation of results should be done always in local context

Example: Two management units in FOI

VHR imagery 2019

Thematic raster file

Relevant python libraries and references

- FOI assessment notebook (applicable also outside CbM workflow)
- Statistical and IQR analysis (on signatures)
- Image segmentation (on preselected outliers)

References:

FOI progress report:

https://marswiki.jrc.ec.europa.eu/wikicap/images/7/75/JRC123711_foi_assessment_final22.pdf

FOI assessment notebook:

from https://github.com/ec-jrc/cbm

CbM on DIAS: the jrc-cbm frontend

On-line training for Outreach, 30 September 2021

JRC D5 – GTCAP Team

Agenda

09:30 - 09:45	Welcome and short introduction into the jrc-cbm frontend
09:45 - 10:15	Frontend data access: Direct DB + RESTful access (hands on)
10:15 - 10:45	Basic data use: selection and visualization (hands-on)
10:45 - 11:00	Break
11:00 - 11:30	Data interpretation for marker analysis (hands on)
11:30 - 12:30	Thematic use cases: FOI, ML and mowing (hands on)
12:30 - 12:45	Q&A, next steps and discussion

Thematic use cases: FOI

- Heterogeneity will be captured in the histogram of band values
- summarized in the extracted parcel statistics (min, max, p25, p50, p75)
- IQR (p75 p25) relative to median (p50) provides skewness indicator
- std (or std/mean) may be result of random noise
- Simple thresholding suits the reduction concept
- Other criteria for significance: high heterogeneity in relevant time sequence, class of the parcel (e.g. grassland in mowing season)
- Escalate to local image segmentation to quantify parcel subdivisions
- Notebook using OpenCV

Clouds and sen2cor: the heterogeneity curse

20200425T104619

20200515T104619

20200407T104021

20200427T104031

20200517T104031

20200321T105021

20200410T105031

20200430T105031

20200323T103639

20200412T103619

20200502T103619

20200505T104619

20200417T104021

20200331T105021

20200402T103619

20200420T105031

20200512T103619

df[df['pid'] == 111817] #.sort values(['high'], ascending=False)

	Unnamed: 0	pid	obstime	mean	std	p25	p50	p75	count	high
97316	114329	111817	2020-03-18 10:40:21.024	2988.3926	1436.7032	1535.00	2633.0	4384.75	1228.0	1.082321
97317	114331	111817	2020-05-17 10:40:31.024	3503.7158	1958.9343	1305.75	3885.5	5445.50	1228.0	1.065436

Thematic use cases: Machine Learning

- jrc-cbm started off with ML in 2018 to show Sentinel data relevance
- dug out as Outreach thematic use case (barely changed)
- core idea: S1 time series provide consistent time series for ML (S2 doesn't)
- Since S1 time series mark practices, ML should separate (core) practices
- Try out in "crop marker" context: can ML identify **outliers**?
- ML requires data preparation, training the model, analyzing the inference
- We use a Deep Neural Network (DNN) in tensorflow/tflearn
- A single notebook in 5 "easy steps". Code and docs in <u>github.com/ec-jrc/cbm</u>
- Hands on runs in Google Colab (provides access to GPU acceleration)

JRC TECHNICAL REPORTS

Technical guidance on the decision to go for substitution of OTSC by monitoring

DS/CDP/2018/17

Devos W., Lemoine G., Milenov P., Fasbender D.

🐵 ML-s1_si	igs.ipynb - C	olabe 🗙 🙆 BEWA - Google Dr	ive × +					o 🗎 🛛 😣
$\leftrightarrow \rightarrow G$	a drive.	google.com/drive/folders/182jFaUjn	CmblPQdudt0sw3HU0ljFw8Fv					Q 🖈 😉 🕼 🗯 🧐 :
÷	bewa_2020_tfrecords_cropselect_classes.csv				en with 🛨	🖶 🕹 :		
		klass	run0	run1	run2	run3	majclass	majcount
	1	0	0	-1	0	0	0	3
	2	0	0	-1	0	0	0	3
	3	0	0	0	-1	0	0	3
	4	0	0	0	-1	0	0	33
	5	0	0	0	-1	0	0	3
K	6	0	-1	0	0	0	0	
	7	0	0	-1	0	0	0	3
	8	0	-1	0	0	0	0	3
	9	0	-1	0	0	0	0	3
	10	0	0	-1	0	0	0	3
	11	0	-1	0	0	0	0	3
	12	0	0	0	0	-1	0	3
	13	0	0	0	0	-1	0	3
	15	0	0		0	-1	0	3
	16	0	0	-1	Q + 0	0	0	3
	10	Ŭ	Ū		U U	0	0	

20200502T103619

20200522T103629

20200611T103629

20200721T103629

20200525T104619

20200614T104629

20200704T104619

20200724T104619

Outlier review with S2 chips

20200505T104619

20200527T104031

20200616T104031

20200530T105031

20200619T105031

20200709T105031

20200601T103629

20200621T103629

20200711T103629

20200731T103629

20200604T104619

20200624T104629

20200517T104031

20200626T104031

20200716T104031

20200520T105031

20200609T105031

20200629T105031

run1 run2 run3 9 9 9 3 9 -1 9 9 n n n n n 9 9 - 1 9 9 9 9 -1 9 9 9 9 -1 9

0

0

0

-1 9 -1

999

20200502T103619

20200611T103629

20200721T103629

20200830T103629

20200616T104031

20200726T104031

Outlier review with S2 chips

20200512T103619

20200621T103629

20200904T104031

20200517T104031

20200626T104031

20200805T104031

20200914T104031

20200701T103629

20200919T103649

permanent meadow (etc.) found as maize (7.1 ha)

20200601T103629 20200606T104031

20200711T103629 20200716T104031

20200820T103629

20200825T104031

20200527T104031

20200706T104031

20200810T103629

AOI bewa: S2 peer review for parcel 1295069329 (Permanent meadow (coverage > 90%); out of rotation for 5 years****, 7.12 ha)

Mowing Time Series Analysis

On-line training for Outreach, 30 Sep 2021

JRC D5 – GTCAP Team

Joint Research Centre

Introduction

Goal: introduce basic principles/operations for **mowing detection** using Sentinel 1/2 time series

This is **not the only way** to perform **mowing detection**: several approaches from the literature

- general concepts
- proof-of-concept level
- reusable components

- Concrete example based on outreach data (dataset from the 2018 Dutch population)
- Some **simplifications** (not all the details will be discussed)

Summarizing the Spatial Dimension

So far:

After performing FOI analysis, heterogenity check,...

Sentinel 1 and 2 data: function of both **space** and **time** Effectively summarizing the spatial dimension

Summary fuctions:

 $MEDIAN(\cdot)$

mean, after applying a buffer compromize between efficiency and robustness

Time Series

Time Series: input of the processing

+ additional statistics

Overall Processing Chain

Main Python Libraries

time series and data frame manipulation

data visualization

handling of parcel geometries

NumPy

numerical computing, array and matrix operations

SciPy

signal processing and statistical operations

Mowing: Signal Selections - S2

- Mowing implies a significat reduction of biomass:
- direct impact on NDVI:
 expected significant drop
 'max-min-max'/'growth-cut-regrowth' pattern[§]

NDVI examples from *L. Stendardi et al.* "Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions" *Remote Sensing 2019*

mowing events 'visible' in other S2 signals, including individual band components

only basic markers idenfied as a drop are considered here

Mowing: Signal Selection and Behaviour - S1

Sentinel-1 Back-scattering and Coherence (COH) can reveal mowing events

Coherence should increase after a mowing event. Several approaches available in the literature (for instance Tamm et al. 2016)

coherence example from Tamm et al. "Relating Sentinel-1 Interferometric Coherence to Mowing Events on Grasslands" Remote Sensing, 2016

For this training: focus on NDVI and COH

Input Time Series

NDVI: search for drops

- Irregular sampling and missing data
- Presence of outliers despite filtering based on SCL layer

COH: search for peaks

- Four components determined by signal polarization and orbit direction (ascending/descending)
- Which (combination of) component(s) should be used?
- Regular sampling, but not uniform if several orbits are combined
- **Noisy** time series: search for peaks could be difficult

Different sampling instants

Time Series Pre-processing

Several operations possible

outlier removal:

for example based on the SCL, on the B02 component, several other methods

- resampling and interpolation:
 - to obtain uniformly sampled time series which allow simplified operations
 - to use a common time scale between time series
- filtering and smoothing*:
 - reduce the impact of noise and other (high frequency) phenomena not corresponding for example to mowing
- time series combining: computation of vegetation indexes from single band data, combining COH components, ...

*these words have specific meanings in the **signal processing** literature and must not be confused with their common use in remote sensing

PREDICTION Estimating the Past, Present and Future

SMOOTHING, FILTERING AND

Impact of Smoothing

fc = 0.0500.65 -2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 2018 FEB MAR APR JUN JUL AUG SEP OCT NOV DEC AN MAY 0.60 0.55 0.50 Coherence 0.45 0.40 0.35 0.30 0.25

Jupyter

FilterDemo-Freq demo based on jupyter notebook

Butterworth filters "maximally flat in band"

Coherence: Dealing with four Components

From the literature: no evidence that one of the components carries more information than the others

Symmetry between components

Euclidean norm: a possible candidate

Marker Detection (I/II) At this point: two smooth TS — NDVI and COH norm Marker: drop ______ Marker: peak

max

Search for a peak: equivalent to searching for a drop on the TS multiplied by -1

Few functions to deal with maxima and minima

A drop is a **max-min-max pattern**

Basic approach: seach for maxima and minima of the TS

Simple functions based on SciPy scipy.signal.argrelmax

scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')

Marker Detection (II/II)

Filter markers with respect to these parameters

Each drop (peak) has properties: duration, depth, area, ...

Thesholds on duration, depth and areas

> Thesholds to be selected according to the local conditions

real

markers?

Composite Markers

Markers are found on both NDVI and COH

Composite markers built from simple markers observed on single time series

Concept of **co-occurrence**

Composite markers: more reliable decisions

False color composite with average B08,B11 and B04 components (see previous presentations)

Conclusions and Next Steps

- Presentation of general principles for marker detection on time series with focus on mowing
 - pre-processing (filtering/smoothing, computation of derived time series)
 - simple marker detection based on TS extrema
 - composite markers
- The process can be fully automated with **two levels of outputs**:
 - marker level (list of markers detected)
 - parcel level (e.g. list of parcels for which at least one marker was found)
- Additional elements to consider include
 - better handling of data gaps and outliers
 - parameter tuning
 - processing on individual bands (only mentioned)

guido.lemoine@ec.europa.eu daniele.borio@ec.europa.eu konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

CbM on DIAS: the jrc-cbm frontend

On-line training for Outreach, 30 September 2021

JRC D5 – GTCAP Team

Next steps

- Time series stored in Outreach MS specific schema
- CARD-BS, CARD-COH6 complete and extracted.
- Secure RESTful access to sigs, hists, parcels.
- MS accounts can be used to test frontend code
- JRC to tailor to the thematic domains (mowing, grazing, catch crops, etc.)
- JRC can organise bilateral technical sessions for data analysis
- MS with DIAS instances can expand their samples (inside the AOI)
- Decisions on CAP 2022+ and Copernicus DIAS are key drivers for future
- We will continue to add to jrc-cbm components at github.com/ec-jrc/cbm

Q&A

konstantinos.anastasakis@ext.ec.europa.eu daniele.borio@ec.europa.eu guido.lemoine@ec.europa.eu pavel.milenov@ext.ec.europa.eu ferdinando.urbano@ec.europa.eu gilbert-madalin.voican@ec.europa.eu csaba.wirnhardt@ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

