
agenda 2

Cbm_Outreach_DIAStraining2_1 3

Cbm_Outreach_DIAStraining2_2 44

Cbm_Outreach_DIAStraining2_3 67

Webinar on DIAS for CbM Outreach - Session 2

Date: Friday, 30th June 2021

Agenda

09:30 - 09:45 Welcome and short introduction into the JRC-CbM backend (Guido Lemoine, JRC)

09:45 - 10:30 DIAS platform: overview of resources and how they fit together (Guido Lemoine, JRC)

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction (Guido Lemoine, JRC)

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction (Guido Lemoine, JRC)

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up (Konstantinos Anastasakis,

JRC)

12:15 - 12:30 Next steps and discussion (Guido Lemoine, Rafal Zielinski, JRC)

On-line training for Outreach, 30 June 2021

JRC D5 – GTCAP Team

CbM on DIAS:
the jrc-cbm backend

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

• A technical introduction to the jrc-cbm backend implementation on DIAS.

• Short rehash of the “deep dive” backend essentials

• Please use the chat for questions during the sessions. Audio & Video during
Q&A.

• Remember to switch off video (save bandwidth) and mute audio, when not
speaking.

Welcome

• For IT managers/programmers/developers:
○ Cloud compute on DIAS
○ “Marshalling” resources for CbM backend
○ The Spatial Database components
○ CARD data and extraction
○ Server components to support Frontend
○ Issues, caveats to be aware of

Audience

• Checks by Monitoring introduces continuous use of Sentinel data streams for
100% of the Member State territory.

• Copernicus DIAS advantages:

○ Access to a consistent, complete Sentinel data archive (push, not pull)

○ Provision of on-demand standard CARD processing

○ Access to compute resources that can (temporarily) scale to needs

○ Based on open industry standards, core open source modules

• Facilitates the needs for TAILORED automated processing.

• Potential for shared methodology

Context

n BRP 2019 @ pdok.nl

m Sentinel-2 @ DIAS
 p Sentinel-1 @ DIAS

n-m, n-p*2 spatial time series
for Sentinel-1, -2 CARD
for b bands (b=14 (S2), 2 (S1))
x 100 for whole EU n ~ 770,000 parcel /yr

m ~ 4000 granules/yr
p ~ 1200 scenes/yr

• The backend is the core jrc-cbm component for server-side requirements
• The backend does the processing heavy-lifting to provide consistent access
to CARD data and their parcel reductions

• It makes sense to have one single maintainer of the backend per MS!
• Outreach: PA organized in separate database schema
• Backend functionalities and performance focuses on common needs
• Backend development may be impacted by Copernicus programme decisions
(e.g. ARD production) and adoption of novel approaches (k8s, dask, GPU)

• Frontend developments (e.g. analytics) may be integrated server-side if of
generic interest to many users.

Backend take home messages

• jrc-cbm is designed on a cloud centric basis (but can also run stand-alone)
• all programming in python, mostly as syntactic glue
• using mature modules
• PostgreSQL/Postgis for (spatial) data management on backend.
• Linux (Ubuntu) bash scripting for orchestration, parsing, conversion (gdal)
• This combination is sufficient to manage the complete cbm process.
• And to further expand with emerging solutions in parallel processing,
hardware specific processing (GPUs), machine and deep learning, etc.

• All maintained and documented on github.com/ec-jrc/cbm
• Licensed under BSD Clause 3 (facilitates maximum re-use)

Technical choices

http://github.com/ec-jrc/cbm

Open Source software components used

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

• The “Data and Information Access Services” are cloud compute
infrastructures closely coupled to PB-scale Copernicus data archives

• The Copernicus program funds 5 DIAS IaaS providers (until end of 2021)
• We focus on CREODIAS use, but technical parallels with others
• DIAS is built on EU cloud service infrastructure providers
• DIAS manages the dedicated Copernicus object store (size, content, cache)
• A DIAS account provides access to a tenant and web-based GUI
• DG AGRI and DG DEFIS fund DIAS accounts for use in CbM
• 2021+ support is under discussion

The DIAS Platform

• DIAS is a bare-bones Infrastructure as a Service (IaaS)

• A platform to select and configure compute resources

• Object storage giving access to [partial] copies of the Copernicus archive

• An interface (catalog) to find what is available in the DIAS store

• Documentation on the various components, protocols, FAQ

• Technical support for IaaS issues

• Other options beyond standard accounts (not used in CbM)

DIAS (a technical view)

https://finder.creodias.eu/

• The “third party” needs to piece together the components, to set up relevant

functionalities, using DIAS resources

• This requires expertise in:
• Linux Virtual Machine (VM) install and configuration

• Spatial databases

• (Python) programming for geospatial analysis

• VM orchestration for parallel computing (openstack, Docker, k8s)

• Server interfaces for data access and analytics (Jupyter Hub, RESTful)

• Good news: all essential components are standards based on open source!

The “third party” on DIAS

Tenant

Distributed
computing
manager

Worker 1

Worker 2

Worker n
...

 Copernicus DIAS IaaS

Spatial
Database Object store

Servers
(JHub,

RESTful)User 1

User 2

User 3

• The DIAS tenant can select and configure VMs for specific functions
• permanent VMs (e.g. database server, Jupyter Hub, RESTful)
• transient VMs (use on demand, run large tasks in parallel, tear down)

• Via GUI, programmatically (openstack), or with help of DIAS provider

• Fully configurable CPU, RAM, disk size, internal and external network, etc.

• With possibility to choose from pre-configured “flavors”

• And store pre-configured VM images for duplication and later re-use

• All VMs typically accessible via keyed SSH (port 22)

• WARNING: you pay for marshalled resources, even if you do not use them!

DIAS resource marshalling

horizon_gui.mp4

https://docs.google.com/file/d/1HKXXWV1_-MEP2xAIBt_U9XQkt9IX6eBG/preview

openstack_cli.mp4

https://docs.google.com/file/d/10REKh6ZHBla0pWQnTGarBIJJ2FmbGPnx/preview

• Object storage is the preferred storage for immutable “Big Data” blobs

• Write once, read often (e.g. YouTube video, DIAS Sentinel data)

• Simpler to manage and extend than file or block storage, much cheaper

• Multiple 10s of PetaBytes (e.g. CREODIAS ~ 20 PB, GEE ~ 85 PB)

• Requires specific protocol to read, CREODIAS uses S3 (AWS standard)

• Generally slower access, esp. since not optimized for partial reads

• Requires S3 credentials for public and/or private bucket access

• Access via s3fs mount, boto3 (python) and gdal vsis3 drivers

DIAS object storage

s3_store.mp4

https://docs.google.com/file/d/1kmIffFylJLQPO7oCi2QUWEgLtxlK2n7r/preview

• Metadata of the Sentinel blobs are written to the DIAS catalog

• Searchable via OpenSearch or other standards (not all DIAS instances)

• Interactively in GUI

• Or as parsable XML (or JSON) for scripted queries

• In CbM metadata is parsed into PostgreSQL/PostGIS dias_catalogue table

• WARNING: Level 2 may not be in online store (check metadata flags!)

DIAS catalog

card_catalogue_creodias.mp4

https://docs.google.com/file/d/1jgWMH7_3fiyGLuvQoi1MAkMvcObChTQe/preview

• A key asset of DIAS is the possibility to process across multiple VMs
• jrc-cbm backend tasks are “embarrassingly parallel” (e.g. extraction)
• Marshalled resources need to be orchestrated to run parallel tasks
• Docker containerization to ease cross-VM installation

Parallel processing on DIAS

• Docker containers behave like specialized VMs
• Dockerize the dependencies
• Push stable container images to docker hub
• Pull to VMs that collaborate in the docker swarm
• Set up the swarm and run a service stack

https://hub.docker.com/r/glemoine62/dias_py

• Docker Swarm is, by far, the simplest parallelization mechanism
• No specific programming needed, only configuration management
• Some issues with service stack termination
• Fine grained control with kubernetes (k8s), with docker containers
• Programmatic parallelization in python (multiprocessing, dask)
• In CbM, beware of database connections required by parallel tasks
• We use parallel processing in parcel and chip extraction
• We expect further parallel processing needs for more complex analytics
• We will consider use of GPUs as well

Parallel processing on DIAS, continued

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

• jrc-cbm backend main function is:
• to generate Application Ready Data (ARD), if not already in DIAS archive;
• to reduce the spatio-temporal image stacks of ARD to parcel time series;

• to provide server components and APIs for data access.
• DIAS instances offer a Processing as a Service (PaaS) solution for ARD
• We now know how to discover ARD and retrieve it from the S3 store
• We also know how to marshall and orchestrate compute resources
• The spatial database is used for storage of control data and reductions
• Extraction combines components to provide a meaningful backend function
• And feeds the frontend with data from the analytical CbM workflow

The jrc-cbm Backend

• Data formats used: JPEG2000 (S-2), BEAM-DIMAP, (CO)GeoTIFF (S-1)
• For S-2: S3 key (/eodata path) points to (undocumented) sub-directory
• S-2: adjacent granules with 10% overlap, may be projected in straddling UTM
• This leads to data duplication, esp. for S-2 L2A (to be resolved in database)
• S-2A and S-2B till suffer from systematic pixel shift (esp. older data)
• S1 CARD-BS has one or more empty lines between (geocoded) frames
• Parcels with only NODATA are dropped, partial NODATA is not dropped
• S1 CARD-BS is not yet “terrain flattened” (work in progress)

Sentinel ARD issues

Outreach backend

Select S2 CARD-2A
Generate S1 CARD-BS
Generate S1-CARD-COH6
Extract parcel statistics

S2 CARD-2A
S1 CARD-BS
S1-CARD-COH6
Catalunya 2018

• Extraction is set up as an automated process which:
• finds the oldest image that is not yet processed (e.g. inserted from the catalogue)
• transfers the image bands from the S3 store onto local disk (this is fastest)
• queries the database for all parcels within the image bounds
• extracts the statistics (μ, σ, min, max, p25, p50, p75) for the bands of the image
• stores the results in the time series database tables
• clears the local disk

• S2 bands: [B02, B03, B04, B08], [B5, B11], S1 bands: [VV, VH]. No indices!
• S2 SCL is extracted as histograms
• python scripts using psycopg2, rasterio, osgeo (gdal), pandas, numpy
• Recently refactored to use rasterized parcels and Numba acceleration

Reduction to parcel extracts

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

Agenda

09:30 - 09:45 Welcome and short introduction into the jrc-cbm backend

09:45 - 10:30 DIAS platform: overview of resources and how they fit together

10:30 - 11:00 The Spatial Database: basics and support to parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 CARD generation and parcel time series extraction

11:45 - 12:15 Supporting the Frontend: RESTful and JHub server set up

12:15 - 12:30 Next steps and discussion

• jrc-cbm provides a modular approach to the implementation of CbM workflow
• cloud-centric in design, particularly for the backend
• the backend benefits from DIAS IaaS and S3 Sentinel data store
• programming needs related to component collation
• module choice based on “best in class” open source, open standards
• focus on functional needs of CbM data reduction and access
• RESTful and Notebooks provide hooks into the Frontend
• all code open sourced, to be maintained on github, as PyPi package
• ready for core tasks, open for collaborative build out

jrc-cbm backend take home messages

• Some Outreach MS are also DIAS onboarders: pip install cbm 😀
• Significant amounts of CARD data already available (CREODIAS, WEkEO)
• The core JRC backend tasks for Outreach are progressing (some delays).
• This will allow us to show core front-end tasks.
• And tailor to the thematic domains (mowing, grazing, catch crops, etc.)
• A dedicated technical frontend seminar is planned for July and September
• Outreach is an excellent platform to benchmark cross-MS robustness
• Decisions on CAP 2022+ and Copernicus DIAS are key drivers for future
• We will continue to add to jrc-cbm components

Next steps

Q&A
guido.lemoine@ec.europa.eu
ferdinando.urbano@ec.europa.eu
konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are
not owned by the EU, permission may need to be sought directly from the respective right holders.

mailto:guido.lemoine@ec.europa.eu
mailto:ferdinando.urbano@ec.europa.eu
mailto:konstantinos.anastasakis@ext.ec.europa.eu
https://creativecommons.org/licenses/by/4.0/

On-line training for Outreach, 30 June 2021

JRC D5 – GTCAP Team

CbM on DIAS:
The Database Component

1. The role of the database in the Outreach CbM system

2. Cut a long story short: introduction to (spatial) relational database

3. The software platform: PostgreSQL and PostGIS

4. What is SQL, the database language in a nutshell

5. Outreach database content

6. Accessing the database

7. Examples of client applications (demos)

Summary

The database in the JRC CbM architecture

● Large set of statistics are extracted from Sentinel images for GSAA parcel
sets (reduction)

● Statistics are used by analysts to verify compliance
● Critical importance of data security and consistency
● Relevance of performance for continuous monitoring
● Multi-user and distributed environment

● Challenges in data use and management

● The DB is the tool for storing and handling the data involved in the process
● The Outreach DB is hosted on the DIAS space close to Sentinel images

Database for CbM: the context

What is a (spatial) relational database?
● A database (DB) is a set of data organized in such a way as to facilitate its

management, use and updating, stored in a computer
● A relational database is a DB with a logical model that structures data as

relationships (tables) that are linked together
○ A table is made of columns and rows and is declaratively created with a structure (column

have data types with values and properties)
○ The number of columns is fixed, the number of rows is variable
○ Each row is identified by the value of one or more columns (primary key)
○ Tables can be formally linked to one another (relation) using foreign keys (the value in a

specific record column must come from another table)
○ Tables are organized in schemas, that are analogous to folders
○ The data is manipulated with SQL language

● A spatial database is a DB that can manage the spatial attribute of an object

● Storage capacity
● Retrieval performance
● Concurrency control
● Permission policy
● Data formalization
● Data integrity controls
● Relational environment (data models)
● Data consistency (normalization)
● Industrial standard

Main features of a relational database

● Remote access
● Server/client structure (modularity)
● Prevent data duplication
● Data preservation
● Easy automation of processes
● Backup/recovery functionalities
● Spatio-temporal data types
● Mature technology
● Cost effective

● SQL (Structured Query Language) is the universally used language in
relational databases

● It is a simple declarative language with limited number of commands
● SQL is used to retrieve data from a database (“queries”) and create

database objects
● SQL is highly standardized and can be run from any database client

What is SQL?

Why PostgreSQL and PostGIS

● Full support of spatial data types
● Great spatial and non-spatial tools for

data management and analysis
● Stable and secure
● Good documentation
● Many procedural languages
● Consolidated project with long history
● Fast development
● Natively supported by many software
● Collaborative and active community
● Multi-platform

● Possibility of commercial support
● Used by many large companies

In addition, it is open source and as such:
● No vendor-lock policies
● No limitations in its use
● No costs for licenses
● Use of standards
● Interoperability with other tools
● Easy to replicate by MS

● Rows in signature table:
number of parcels * number of images * number of bands

● 500,000 parcels, 73 Sentinel images, 7 bands: 260,000,000 records (20 GB)
● Issues with data retrieval: optimization
● Indexes: better performance (but more disk space and slower upload)

● Extract all sigs for a parcel/band:
○ With indexes: 0.2 seconds
○ Without indexes: 2 seconds

● Extract all parcels for an image/band:
○ With indexes: 2 seconds
○ Without indexes: 2 minutes

Performance optimization: basic

If the performance achieved with indexes are not satisfactory, other actions are
possible:
● Tune configuration parameters
● Partitioned tables
● Table clustering
● Increase hardware resources
● Multiple-Server Parallel Query Execution

Performance optimization: advanced

● For some countries, CbM data can be an order of magnitude larger than
those tested in the Outreach DB: importance of scalability

● PostgreSQL can scale beyond running on a single server, exploiting cloud
based infrastructures (database replication, database clustering,
connection pooling)

● Many companies provide commercial support for advanced PostgreSQL
high performance, multi-server solutions based on specific requirements

● Database are standard: easy to move to another platform if needed

PostgreSQL scalability

Outreach DB content

● Outreach DB: store time series of Sentinel bands
signature for each parcel

● Images metadata table (public schema)
● Parcels table (country schema)
● Signatures table (country schema)
● Cloud flags histogram table (country schema)

● Parcels, sigs and hists are year-specific
● There is one dias_catalogue table for all countries

Extending the DB in the Cbm system - 1

Extending the DB in the Cbm system - 2

● The database architecture is based on a client-server structure
● The database server (PostgreSQL) is the back-end system of the database

application and provides database functionality to client applications
● A database server can host many databases and a server can host many

database servers
● The client is an interface through which a user makes a request to the

server through SQL commands and converts the server’s response into the
form requested by the user

● Data management and storage layer is physically separated from data use

Client/server architecture

In order to remotely access a DB from a client, 5 parameters are required:

● Server IP address
● Port
● (Database name)
● User name
● User password

The parameters to connect to the Outreach DB are provided on requests, but
in general Outreach DB access is granted through an intermediate layer.

Connection parameters

● It ensures performance and security by preventing poorly designed
resource-intensive queries

● It facilitates access to basic users with no knowledge of SQL who can be
guided by predefined queries offered as a simple graphical interface where
only defined parameters need to be defined

● This intermediate layer is implemented in the Outreach project using a
RESTful API

Access though an intermediate layer

● Restrict access and possible operations on the data according to the
different types of users

● PostgreSQL manages access permissions to the database through ROLES
● A role is an entity that can own objects and have privileges on the database
● Users can be grouped to facilitate privilege management
● Each user is assigned a password together with the role
● Access to the server can be restricted to certain IP addresses

Permission policy

● Through a GUI (e.g. PgAdmin for tables, QGIS or OGR2OGR for shapefile)

● Using COPY - /COPY commands from command line (as CSV)

● With a backup and restore of the DB (pg_dump, pg_restore)

Data import/export is easy, but table size can be an issue! (millions of rows)

Data export/import from/to the DB

● PgAdmin: the native and most common GUI for querying data and managing
PostgreSQL

● Psql: the interactive terminal for working with PostgreSQL
● QGIS: desktop GIS tool perfectly integrated with R
● PhpPgAdmin: a simplified version of PgAdmin available as web tool (no

installation is required by the user)
● R: a language and environment for statistical computing and graphics
● Python: a complete and powerful programming language for data processing
● RESTful API: an architectural style for an application program interface (API)

that uses HTTP requests to access and use data

Database clients

P
gA

dm
in

 D
E

M
O

https://docs.google.com/file/d/1TK8NKFhjKLtbvIWKN76aqi-TtuauNlzH/preview

Q
G

IS
 D

E
M

O

https://docs.google.com/file/d/1lsbOCnQGJN-PAviQikwoYo1kgGzfypS-/preview

Q&A
guido.lemoine@ec.europa.eu
ferdinando.urbano@ec.europa.eu
konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are
not owned by the EU, permission may need to be sought directly from the respective right holders.

Documentation on database available in the JRC CbM GitHUB repository (soon)

mailto:guido.lemoine@ec.europa.eu
mailto:ferdinando.urbano@ec.europa.eu
mailto:konstantinos.anastasakis@ext.ec.europa.eu
https://creativecommons.org/licenses/by/4.0/

On-line training for Outreach, 30 June 2021

JRC D5 – GTCAP Team

CbM on DIAS:
Server components

CbM Server components
● CbM git repository (quick introduction)

● Database deployment

● Jupyter Server

○ Single user

○ Multi user (Hub)

● RESTful API server setup

● CbM RESTful API use

○ Python scripts

○ Notebook widgets

● Jupyter Notebooks examples

CbM git repository

cbm python library available on
Python Package Index (PyPI)
https://pypi.org/project/cbm/
users can install cbm with:
pip install cbm

Documentation published with Sphinx, a full
featured intelligent python documentation
generator. Can be viewed at:

● https://jrc-cbm.readthedocs.io or
● https://ec-jrc.github.io/cbm/ (under development)

Docker images available
on Dockerhub:

https://hub.docker.com/u/gtcap

JRC cbm
git repository

https://github.com/ec-jrc/cbm

Technical issues
page on github

https://github.com/
ec-jrc/cbm/issues

https://pypi.org/project/cbm/
https://jrc-cbm.readthedocs.io
https://ec-jrc.github.io/cbm/
https://hub.docker.com/u/gtcap
https://github.com/ec-jrc/cbm
https://github.com/ec-jrc/cbm/issues
https://github.com/ec-jrc/cbm/issues

CbM Repository structure
This repository contains example scripts and documentation to get started with
CbM, includes:

● api/: Files to create a RESTful API for cbm
● cbm/: Python library for Checks by Monitoring (available at pypi.org)
● docker/: Docker image files
● docs/: Sphinx documentation files
● ipynb/: Jupyter Notebook examples
● scripts/: Command line scripts

○ extraction/: Extraction example scripts
○ calendar_view/: Time series calendar (Requires RESTful API server)

● tests/: Test scripts for testing a variety of functionalities.

https://github.com/ec-jrc/cbm

https://github.com/ec-jrc/cbm

Server deployment

Database Server
● PostgreSQL is a powerful, open source object-relational database system

Deploy a Postgres database server wit PostGIS: extension

docker run --name cbm_db -d --restart always -v database:/var/lib/postgresql --shm-size=2gb -p 5432:5432 -e
POSTGRES_USER=postgres -e POSTGRES_PASS=mydiaspassword kartoza/postgis

docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

75fc1f296c79 kartoza/postgis "docker-entrypoint.s…" 9 seconds ago Up 7 seconds 0.0.0.0:5432->5432/tcp cbm_db

-> list docker containers: docker ps -a:

-> Install postgresql client tools
sudo apt-get install postgresql-client-common postgresql-client-10

psql -h localhost -d postgres -U postgres

psql (10.12 (Ubuntu 10.12-0ubuntu0.18.04.1), server 10.7 (Debian 10.7-1.pgdg90+1))
Type "help" for help.

postgres=#

Jupyter Server
What is Jupyter;
Jupyter is a web-based interactive development environment that
allows users to create and share codes, equations, visualisations,
as well as text. There are two main interfaces:

● Jupyter Tree view: the first generation of Jupyter interface,
a simplified interface with the basic functionalities for
running Jupyter Notebooks (http://hostname/tree)

● JupyterLab the next generation of the Jupyter server
interface, with the ability to configure and arrange the user
interface to support a wide range of workflows in data
science, scientific computing, and machine learning.
JupyterLab is extensible and modular with plugins that add
new features. (http://hostname/lab)

http://host/tree
http://host/tree

Jupyter Notebooks

The Jupyter Notebook

● The Jupyter Notebooks are documents that
contain live code, equations, visualizations
and narrative text. Uses include: data
cleaning and transformation, numerical
simulation, statistical modeling, data
visualization, machine learning, and much
more.

Get started at https://jupyter.org/try

https://jupyter.org/try

Deploy a Jupyter server
Pre-requisites:

● A server running Ubuntu >18.04 where you have root access.
● At least 1.5GB of RAM on your server.
● Ability to ssh into the server & run commands from the prompt.
● A IP address where the server can be reached from the browsers of your target audience.
● Docker (for CbM Jupyter server)

CbM Jupyter docker image:
https://hub.docker.com/r/gtcap/cbm_jupyter

More info at https://jrc-cbm.readthedocs.io/en/latest/setup_software.html#jupyter-server

https://hub.docker.com/r/gtcap/cbm_jupyter
https://jrc-cbm.readthedocs.io/en/latest/setup_software.html#jupyter-server

Deploy a Jupyter server
With no shared folder "bindmount", (your files within the container will be deleted if you stop the container):

docker run -p 8888:8888 gtcap/cbm_jupyter

With a shared folder "bindmount", (your files will not be deleted if you stop the container):
- Navigate to the folder you want to bindmount to the container, e.g. the home directory (cd ~/):

- docker run -it --privileged=true --user root -e NB_USER="$USER" -e NB_UID="$UID" -e NB_GID="$UID" /
-p 8888:8888 -v "$PWD":/home/"$USER" --name=jupyter4cbm gtcap/cbm_jupyter

Terminal output :

- Access the Jupyter server on port 8888 (or any other port you set) on your VM's public ip (EIP)

or your local ip if you have set port forwarding e.g.: 0.0.0.0:8888

- Copy the token from the command line and add it to the web interface.

[I 08:51:48.705 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 08:51:48.708 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///home/jovyan/.local/share/jupyter/runtime/nbserver-8-open.html
 Or copy and paste one of these URLs:
 http://abcd12345678:8888/?token=abcd12345678
 or http://127.0.0.1:8888/?token=abcd12345678

JupyterHub
What is JupyterHub;

● JupyterHub brings the power of notebooks to groups of users. It makes it possible to serve a pre-configured data
science environment multiple users. It is customizable and scalable, and is suitable for small and large teams,
academic courses, and large-scale infrastructure.

Key features

- Customizable - Flexible - Scalable - Portable

Experience required to Deploy a JupyterHub server:

● Cloud infrastructure management
● Docker and/or Kubernetes

○ Helm if using Kubernetes to configure and control the packaged JupyterHub installation
● Understanding Jupyter Server structure and operation
● Linux terminal interface usage
● Linux user management

RESTful APIs

API can be described as a mediator between the users or clients and the resources or web services
they want to get. A RESTful API is an architectural style for an application program interface (API) that
uses HTTP requests to access and use data. That data can be used to GET, PUT, POST and DELETE
data types, which refers to the reading, updating, creating and deleting of operations concerning
resources.

Disadvantages:
● Takes time to develop*
● Server side processing*

Advantages:
● Portability
● Security
● Maintainability
● Performance

Deploy a RESTful API for CbM
Pre-requisites:

● A server running Ubuntu >18.04 where you have root access.
● Ability to ssh into the server & run commands from the prompt.
● A IP address where the server can be reached from the browsers of your target audience.
● Docker installed.A IP address where the server can be reached from the browsers of your target audience.

JRC provides the code to deploy a RESTful API for CbM (https://github.com/ec-jrc/cbm)

Documentation at: https://jrc-cbm.readthedocs.io/en/latest/setup_build_api.html

CbM RESTful API use:

- Flask: a micro web framework written in Python.
- Gunicorn: a Python Web Server Gateway Interface (WSGI) HTTP server.
- Meinheld: a high-performance WSGI-compliant web server

Future implementations: FastAPI, Supervisord, nginx

https://github.com/ec-jrc/cbm
https://jrc-cbm.readthedocs.io/en/latest/setup_build_api.html

Deploy a RESTful API for CbM
1. Clone the cbm repository: git clone https://github.com/ec-jrc/cbm.git
2. Navigate to the api folder: cd cbm/api
3. Add an API user:

a. python3 scripts/users.py add username password dataset
b.

4. Set database connection settings - config/main.json
5. Add available option (optional) - options.json
6. Deploy the RESTful API docker container

docker run -it --name api -v "$PWD":/app -p 80:80 gtcap/cbm_api

Documentation at https://jrc-cbm.readthedocs.io/en/latest/setup_build_api.html

https://jrc-cbm.readthedocs.io/en/latest/setup_build_api.html

Access the RESTful API
● From the web browser

● Interactively in a jupyter notebook with the cbm python package:

Access the RESTful API

RESTful USE
Get parcel information:
http://185.178.85.7/query/parcelById?aoi=ms&year=2020&pid=1234&withGeometry=True

RESTful USE Notebook examples

Get parcel Time series:

http://185.178.85.7/query/parcelTimeSeries?aoi=ms&year=2020&pid=1234&tstype=s2

RESTful USE Notebook examples

RESTful USE Notebook examples

RESTful USE
Get parcel’s orthophotos

 With cbm package:

Within the browser:
http://hostname/query/backgroundByLocation?lon=6.32&lat=52.34&chipsize=512&extend=256.0

Links to get started
➔ CbM repository: https://github.com/ec-jrc/cbm
➔ CbM Documentation: https://jrc-cbm.readthedocs.io or https://ec-jrc.github.io/cbm/ (under development)
➔ CbM Python library: https://pypi.org/project/cbm
➔ CbM docker images: https://hub.docker.com/u/gtcap

Other technical information:
● Creating pull requests with an interactive way:

○ docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
● Using git guide non interactively:

○ http://rogerdudler.github.io/git-guide
● Google Python Style Guide:

○ https://google.github.io/styleguide/pyguide.html
● Markdown (.md) and reStructuredText (.rst) guides:

○ https://www.markdownguide.org, https://docutils.sourceforge.io/rst.html
● Jupyter Notebooks:

○ https://jupyter-notebook.readthedocs.io/
○ Jupyter Notebook CheatSheet: Jupyter_Notebook_CheatSheet_Edureka.pdf

● Get started with python:
○ https://python101.pythonlibrary.org/
○ https://www.programiz.com/python-programming/first-program
○ https://realpython.com/tutorials/data-viz https://python-graph-gallery.com
○ https://realpython.com/tutorials/machine-learning

https://github.com/ec-jrc/cbm
https://jrc-cbm.readthedocs.io
https://ec-jrc.github.io/cbm/
https://pypi.org/project/cbm
https://hub.docker.com/u/gtcap
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
http://rogerdudler.github.io/git-guide
https://google.github.io/styleguide/pyguide.html
https://www.markdownguide.org
https://docutils.sourceforge.io/rst.html
https://jupyter-notebook.readthedocs.io/en/stable
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://python101.pythonlibrary.org/
https://www.programiz.com/python-programming/first-program
https://realpython.com/tutorials/data-viz
https://python-graph-gallery.com
https://realpython.com/tutorials/machine-learning

Q&A
guido.lemoine@ec.europa.eu
ferdinando.urbano@ec.europa.eu
konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are
not owned by the EU, permission may need to be sought directly from the respective right holders.

mailto:guido.lemoine@ec.europa.eu
mailto:ferdinando.urbano@ec.europa.eu
mailto:konstantinos.anastasakis@ext.ec.europa.eu
https://creativecommons.org/licenses/by/4.0/

	agenda
	Cbm_Outreach_DIAStraining2_1
	Cbm_Outreach_DIAStraining2_2
	Cbm_Outreach_DIAStraining2_3

