
agenda 2

Cbm_Outreach_DIAStrainingI_P1 3

Cbm_Outreach_DIAStrainingI_P2 51

Cbm_Outreach_DIAStrainingI_P3 56

Webinar on DIAS for CbM Outreach - Session 1

Date: Friday, 23rd June 2021

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS (Guido Lemoine, JRC)

09:45 - 10:15 The Big Picture: functional modules and why we need them? (Guido Lemoine, JRC)

10:15 - 11:00 The Backend: CARD processing and parcel extraction (Guido Lemoine, JRC)

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks (Guido Lemoine, JRC)

11:45 - 12:15 The CbM code base structure, documentation and collaboration (Konstantinos

Anastasakis, JRC)

12:15 - 12:30 Next steps and discussion (Rafal Zielinski, JRC)

On-line training for Outreach, 23 June 2021

JRC D5 – GTCAP Team

CbM on DIAS: a technical
deep dive

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• The “deep dive” will provide details about the jrc-cbm implementation on DIAS.

• Short introduction of the CbM context, current status

• Please use the chat for questions during the sessions. Audio & Video during
Q&A.

• Remember to switch off video (save bandwidth) and mute audio, when not
speaking.

Welcome

• For non-programmers:
○ Cloud principles
○ DIAS and Sentinel data
○ The basis for “Big Data Analytics”, ready for use

• For programmer/developers:
○ A modular system of components
○ python, SQL + linux bash
○ Dockerization + parallel processing
○ How to integrate analytics, image processing

• For all:
○ Fully functional scalable European solution
○ Fit-for-purpose for current and future CbM needs

Audience

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• Checks by Monitoring introduces continuous use of Sentinel data streams for
100% of the Member State territory.

• Copernicus DIAS advantages:

○ Access to a consistent, complete Sentinel data archive (push, not pull)

○ Provision of on-demand standard CARD processing

○ Access to compute resources that can (temporarily) scale to needs

○ Based on open industry standards, core open source modules

• Facilitates the needs for TAILORED automated processing.

• Potential for shared methodology

Context

• DIAS for CbM introduced in 2019. DG AGRI + DG DEFIS funded
• 4x ESA managed DIAS (CREODIAS, MUNDI, SOBLOO, ONDA)
• EUMETSAT managed WEkEO (which runs on CloudFerro)
• Categories of Member State Paying Agencies (PA)

○ Group 1: Early adopters (2019+): BE-VL, ES, DK, IT
○ Group 2: Specific schemes (2020+): MT, BE-WA, FR, 4 (6) DE Länder, FI

(IE, PT)
○ Group 3: Experimental (2020+, WEkEO): BG, RO, LV
○ Outreach: AT, HR, EE, SE, HU, NL, PL, CZ, +DE

• 2021+ arrangement under design, depends on DIAS future, CAP directions.

Onboarding status

n BRP 2019 @ pdok.nl

m Sentinel-2 @ DIAS
 p Sentinel-1 @ DIAS

n-m, n-p*2 spatial time series
for Sentinel-1, -2 CARD
for b bands (b=14 (S2), 2 (S1))
x 100 for whole EU n ~ 770,000 parcel /yr

m ~ 4000 granules/yr
p ~ 1200 scenes/yr

• We recommend jrc-cbm as a TAILORED solution

jrc-cbm versus SEN4CAP

jrc-cbm SEN4CAP

API python, SQL Java, C++, python, JavaScript, R

CARD processing DIAS PaaS or internal Internal

Time series PostgreSQL/postgis Arrow (since version 2)

Resource needs 1 medium VM, additional on demand and
need basis (cheap)

1 very large VM, continuously (expensive)

Modularity Role based backend + frontend, scalable Single monolithic “washing machine”

Graphical interface Jupyter notebooks Dashboards, Jupyter notebooks

Open source Fully, BSD Clause 3 Not all modules, GPL 3

Development choices PA community of practice. Cloud at the
core.

Space data push, academia. Cloud as an
afterthought.

• jrc-cbm versus SEN4CAP, continued (Ref. final SEN4CAP meeting 4 Mar 2021).

• The PA has an actual crop map after GSAA update (~ in May)!

○ Which is 95+% accurate, for the full range of crop classes

○ One-to-one object based, if GSAA is FOI compliant

○ No satellite data based system will (ever?) achieve that

○ It is not in the PA interest to resolve accuracy issues in crop classifications

○ Depending on schemes, (c)omission errors may not be relevant at all

• in jrc-cbm “crop” is a marker derived from ML applied to time series

Why you do NOT need a crop map

• How to generate the minimum required INFORMATION to confirm/reject
compliance with the declared PRACTICE

• Sentinels produce dense, hybrid sensor data
• Time-series of Sentinel sensor data may (not) pick up the signature of the
events and patterns that relate to the practice (markers)

• Understanding how Sentinel markers relate to practices requires knowledge
of the physics behind sensor data (a translation step)

• Optimization through automation + reduction to handle the data load
• Feeds into traffic light system for follow up (e.g. the need for complementary
information).

The jrc-cbm “marker” concept

• INFORMATION in hybrid sensor data is best derived from signals that are
not (too much) correlated

• i.e. combinations of DIFFERENT spectral bands of S2, dual polarized
backscattering coefficients and coherence of S1

• Not “biophysical parameters” (LAI, fAPAR, fCover), because these are
transformations of 2 or 3 S2 bands (therefore redundant, expensive)

• Be careful with “smoothing” or “averaging” (misnamed as “practice markers”
in SEN4CAP), because you may just eliminate the event you are looking for.

• Other ancillary data may be required to explain signal artefacts (DEM,
weather parameters, etc).

The jrc-cbm “marker” concept, continued

• jrc-cbm considers roles. Not all roles need to work with all modules
• ICT expert maintains IaaS and the required server components, e.g.
monitoring CARD production, run extractions

• This BACKEND role can be managed by one person per MS (or even DIAS)
• Data analytics expert programs and runs core and markers analytics (e.g.
extraction, machine learning). Internal and external to the PA.

• Data consumers extract, cross-check, verify, combine, decide and report
• These FRONTEND roles makes use of RESTful API, Jupyter Notebooks, etc.
• The combination of BACKEND and FRONTEND ensures full traceability.

jrc-cbm roles and use patterns

Tenant

Distributed
computing
manager

Worker 1

Worker 2

Worker n
...

 Copernicus DIAS IaaS

Spatial
Database Object store

Servers
(JHub,

RESTful)User 1

User 2

User 3

• jrc-cbm is designed on a cloud centric basis (but can also run stand-alone)
• all programming in python, mostly as syntactic glue
• using mature modules (see cbm code presentation later)
• PostgreSQL/Postgis for (spatial) data management on backend.
• Linux (Ubuntu) bash scripting for orchestration, parsing, conversion (gdal)
• This combination is sufficient to manage the complete cbm process.
• And to further expand with emerging solutions in parallel processing,
hardware specific processing (GPUs), machine and deep learning, etc.

• All maintained and documented on github.com/ec-jrc/cbm
• Licensed under BSD Clause 3 (facilitates maximum re-use)

Technical choices

http://github.com/ec-jrc/cbm

We knew it, but now we know why we knew it...

Open Source software components used

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• jrc-cbm backend main function is:
• to generate Application Ready Data (ARD), if not already in DIAS archive;
• to reduce the spatio-temporal image stacks of ARD to parcel time series.

• ARD generation of S-2 is not needed, if you can live with sen2cor L2A
• ARD generation of S-1 is needed, because the Copernicus program did not
foresee it (an anomaly that may be resolved in the future)

• DIAS instances offer a Processing as a Service (PaaS) solution for ARD
• ARD is stored in the S3 object store of the DIAS, in public or private buckets
• There is no real reason why parcel extraction could not be offered as a PaaS
• But currently, it’s not, so you need to do this on your DIAS resources

The jrc-cbm Backend

• Sentinel-1 ARD processing is needed to generate:
• calibrated geocoded backscattering coefficients from Level 1 GRD (CARD-BS);
• geocoded coherence from Level 1 SLC S1A and S1B pairs (CARD-COH6).

• CARD-BS has 10 m, CARD-COH6 has 20 m pixel spacing. Auto-UTM
projected (Cloud Optimized) GeoTIFF or BEAM DIMAP format.

• CREODIAS uses the Copernicus DEM.
• DIAS instances produce CARD with JRC tested recipes for SNAP s1tbx
• Involves the transfer of large files (SLC ~ 7 GB per image) and RAM hungry
processing (128 GB of RAM).

• Procedure is not yet part of cbm documentation (available on request)

Sentinel-1 ARD processing

● S1-CARD-COH6 generation requires combining one S1A with 2
consecutive S1B Level 1 SLC frames (or vice versa) because
frame boundaries are not synchronized.

● Thus, each coherence scene requires roughly 21 GB SLC data.
● Each SLC scene consists of 3 subswaths that are processed

separately and then merged.
● We use python scripts to automatically select the combinations

and set up SNAP gpt to run the relevant XML graphs.

• CARD processing can be done for a large seasonal volume or continuously
on a daily basis

• CARD processing and storage is charged to your DIAS account (unit prices).
• Public S3 storage makes it available to other (CREO)DIAS users.

• You can decide to run SNAP s1tbx yourself. We do NOT recommend
changing the recipes.

• SNAP s1tbx is open source, but not particularly efficient code (Java)
• GPU processing of SLC (COH6) allows for a speed up of a factor 50+
• We are working on a procedure to introduce Radiometric Terrain Correction.

Sentinel-1 ARD processing, continued

https://github.com/glemoine62/InSAR-on-Sentinel-1-TOPS-data-POSIX

Outreach backend

Select S2 CARD-2A
Generate S1 CARD-BS
Generate S1-CARD-COH6
Extract parcel statistics

S2 CARD-2A
S1 CARD-BS
S1-CARD-COH6
Catalunya 2018

• The Sentinel ARD collections are a temporal patchwork of image frames
• The PA’s parcel set is (usually) for a contiguous geographical area
• Parcel extraction needs to combine

• P parcel features (P = several 100K per PA)
• N S2 CARD-L2A, M S1 CARD-BS and ~ M S1 CARD-COH6 image frames
• N and M in the order of 1000s (N ~ 2.5xM)
• Each N has 3 or more bands (e.g. B8, B4, SCL), M has 2 (VV and VH)
• Expandable to Q different indices, SCL as histograms

• Leads to several 100 M records of (parcel_id, obs_id, band, statistics).
• Order of 10 GB per (parcel_id, band) for 1 Million parcels/year in PostgreSQL

Reduction to parcel extracts

• State-of-the-art open source object-relational database system
• SQL compliant with PostgreSQL specific extensions
• Role based privileges (e.g. db manager, db developer, db viewer)
• postgis extension for spatial objects (vector and raster), queries, functions
• PostgreSQL server handles network client connections (usually port 5432)

Why do we need PostgreSQL?

• jrc-cbm uses mostly standard (spatial) SQL
• primary, foreign keys with index/cluster-ing
• logic handled in python (psycopg2)
• parcel data sets, CARD metadata and state
management, time series

• Short psql demo

https://www.postgresql.org/docs/12/features-sql-standard.html

• Extraction can be set up as an automated process which:
• finds the oldest image that is not yet processed (e.g. inserted from the catalogue)
• transfers the image bands from the S3 store onto local disk (this is fastest)
• queries the database for all parcels within the image bounds
• extracts the statistics (μ, σ, min, max, p25, p50, p75) for the bands of the image
• stores the results in the time series database tables
• clears the local disk

• Recently refactored to use rasterized parcels and Numba acceleration
• ~ 9 times faster than last year (or, can be run on 1/9th of the resources!)
• Our current World 🌍 record is 3 M parcels x 2 S1 CARD-BS bands for 14
months (~1100 images) in 24 hrs on a single machine (8x CPU/32 GB RAM)

Reduction to parcel extracts, continued

• A key asset of DIAS is the possibility to process across multiple VMs
• Many jrc-cbm tasks are “embarrassingly parallel” (e.g. extraction)
• As a first step, “marshall the resources” using openstack (Horizon)
• In a second step, “orchestrate the resources” to execute parallel tasks

Parallel processing on DIAS

• Short openstack cli demo, ssh access
• Dockerize the dependencies
• Orchestrate with docker swarm
• Alternative orchestration: k8s, dask (!)
• Other uses in jrc-cbm: chip extraction
• Future use: complex raster processing, ML

https://hub.docker.com/r/glemoine62/dias_py
https://dask.org/

• The frontend needs to access the backend data sets, which requires:
• direct access to database tables for developers, e.g. in Jupyter Notebooks
• abstracted RESTful access to database tables for users
• abstracted RESTful access to sub-selections of S3 stored CARD data
• abstracted RESTful access to advanced server-side processing routines

• RESTful requires a server, JupyterHub is already a DIAS service
• Both may use orchestrated multiple VM for scaling
• jrc-cbm components only address moderate multi-user request loads
• You always have the option to transfer the database tables to a local host!

Other backend modules

• The backend is the core jrc-cbm component for server-side requirements
• The backend does the processing heavy-lifting to provide consistent access
to CARD data and their parcel reductions

• It makes sense to have one single maintainer of the backend per MS!
• PA organized in separate databases (configuration management)
• Backend functionalities and performance focuses on common needs
• Backend development may be impacted by Copernicus programme decisions
(e.g. ARD production) and adoption of novel approaches (k8s, dask, GPU)

• Frontend developments (e.g. analytics) may be integrated server-side if of
generic interest to many users.

Backend take home messages

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• jrc-cbm frontend main function is:
• to integrate backend results into the PA workflow;
• to support analytics, development
• to design and apply marker analysis for decision support
• to provide access to relevant ancillary reference data
• to ensure full reproducibility of decisions
• to support reporting tasks

• The frontend allows the build out of augmented application logic
• This may require multiple backend callbacks for refinement
• Some mature frontend functionality may be integrated as backend logic

The jrc-cbm Frontend

• The simplest use case is just visualizing the time series
• and manually mark the temporal artefact of interest
• this can be “augmented” with more sophisticated calendar views
• and include combinations of S1 and S2 time series

• Use visualization to show the time series of an outlier vs it’s peers
• idem, but based on some quantified difference measures (e.g. min distance)
• this can be augmented by pre-calculating min distance for each parcel and it’s
N nearest peers

Simple Frontend use cases

S2 temporal profile

three mowing events and
other telltale signs that this
is indeed (irrigated) alfalfa

Pseudo-code:

get B4, B8 from RESTful
calculate NDVI
plot

Pseudo-code:

get B4, B8 from RESTful
calculate NDVI
plot
get S1 C6 VV, VH from RESTful
plot
get S1 BS VV, VH from RESTful
plot
getBackground from RESTful
plot
get parcel from RESTful
plot

simultaneous drop in NDVI
and jump in coherence mark
mark mowing event. Other
behavior is typical for
permanent grassland.

Spatial expansion of time series view
(but essentially the same information)

Pseudo-code:

get B4, B8 from RESTful
calculate NDVI
plot
get CalendarView (uses RESTful)

Report generation (Bayern PA!)

Pseudo-code:

get timeseries from database
get CalendarView (from WMS)
plot to multipage PDF

• Run in a Flash server

• Basic information retrieval (parcelByLocation)

• Fast parcel time series statistics (parcelTimeSeries, parcelPeers)

• (Slower) image chip selection, for visualization (chipByLocation,

backgroundByLocation (Google, Bing and orthos via WMTS))

• idem, but full resolution GeoTIFFs (rawChipByLocation, rawChipsBatch,

rawS1ChipsBatch). Uses multiple VMs on the backend for retrieval.

• Scripts (or Notebooks) “consume” RESTful services via python requests

jrc-cbm RESTful services

• Check FOI heterogeneity of arable crops:
• access to S2 time series for arable crop parcels [of class X, of size > 0.3 ha, etc.];
• use parcels statistics in the Bn band to test if a heterogeneity indicator can be derived;
• (consider access to current and recent orthophotos, previous GSAA declaration)
• set thresholds and define constraints (e.g. how often?) and apply markers
• visualize marker outputs for samples of chips extracted from the backend
• decide on the attribution to green/yellow/red
• Jupyter + direct access + RESTFul demo

• Augmenting application logic would, for instance, apply segmentation on the
full resolution chips to characterize and enumerate subdivision

• If your marker is robust it could move to the backend, for batch processing

A slightly more elaborate Frontend use case

Sugarbeet,
not yet
harvested.

• The frontend “consumes” data from the backend to feed into post-processing
• Direct connections are possible for developer/analytics (e.g. in Notebooks)
• But most end-users will access RESTful API requests
• Access to time series (and parcel features) is generally very fast
• Access to S3 image extracts is slower, best after (significant) reduction
• Markers are designed and tested in the frontend
• If sufficiently robust, markers can be implemented on the back-end, with
dedicated RESTful endpoints

• Frontend analytics is boundless, allowing full integration of the python
software stack and adoption of new approaches “on the fly”

Frontend take home messages

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• jrc-cbm provides a modular approach to the implementation of CbM workflow
• cloud-centric in design, but not prescriptive in what should run where
• close to community of practice concerns
• complexity mostly set by required components and frameworks
• module choice based on “best in class” open source
• portability amongst DIAS instances proven
• separation of concerns with backend and frontend, but fluid boundary
• all code open sourced, to be maintained on github, as PyPi package
• ready for core tasks, open for collaborative build out

jrc-cbm take home messages

Agenda

09:30 - 09:45 Welcome and (very) short introduction into CbM+DIAS

09:45 - 10:15 The Big Picture: functional modules and why we need them

10:15 - 11:00 The Backend: CARD processing and parcel extraction

11:00 - 11:15 Break

11:15 - 11:45 The Frontend: RESTful services and Jupyter Notebooks

11:45 - 12:15 The cbm code base structure, documentation and collaboration

12:15 - 12:30 Next steps and discussion

http://github.com/ec-jrc/cbm

• Some Outreach MS are also DIAS onboarders: pip install cbm 😀
• A dedicated technical backend webinar is planned for June 30.
• The core JRC backend tasks for Outreach will be finishing soon.
• This will allow us to show core front-end tasks.
• And tailor to the thematic domains (mowing, grazing, catch crops, etc.)
• A dedicated technical frontend seminar is planned for July and September
• Outreach is an excellent platform to benchmark cross-MS robustness
• Decisions on CAP 2022+ and Copernicus DIAS are key drivers for future
• We will continue to add to jrc-cbm components

Next steps

Q&A
guido.lemoine@ec.europa.eu
konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2021

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are
not owned by the EU, permission may need to be sought directly from the respective right holders.

mailto:guido.lemoine@ec.europa.eu
mailto:konstantinos.anastasakis@ext.ec.europa.eu
https://creativecommons.org/licenses/by/4.0/

6/23/2021 parcel_workflow

185.178.85.219:8080/user/user/lab 1/5

In []:

!pip install cbm --upgrade

In [3]:

from cbm import ipycbm

ipycbm.config()

In [4]:

import requests

import json

from cbm.utils import config

parcels = 'nld2019'

lon = 4.7785

lat = 52.7784

url = config.get_value(['api', 'url'])

user = config.get_value(['api', 'user'])

pwd = config.get_value(['api', 'pass'])

Get the parcel id for this location

locurl = f"{url}/query/parcelByLocation?parcels={parcels}&lon={lon}&lat={lat}"

Parse the response with the standard json module

response = requests.get(locurl.format(parcels, lon, lat), auth = (user, pwd))

parcel = json.loads(response.content)

Check response

if not parcel:

 print("Parcel query returned empty result")

 sys.exit()

elif not parcel.get(list(parcel.keys())[0]):

 print(f"No parcel found in {parcels} at location ({lon}, {lat})")

 sys.exit()

print(parcel)

{'ogc_fid': [165238], 'cropname': ['Bieten, suiker-'], 'cropcode':

[256], 'srid': [28992], 'area': [44708.6747390683], 'clon': [4.7783

8203674297], 'clat': [52.7785134313635]}

6/23/2021 parcel_workflow

185.178.85.219:8080/user/user/lab 2/5

In [5]:

import pandas as pd

from datetime import datetime

from matplotlib import pyplot as plt

Use pid for next request

pid = parcel['ogc_fid'][0]

cropname = parcel['cropname'][0]

area = parcel['area'][0]/10000.0

query parameter values

aoi = 'nld'

year ='2019'

tstype = 's2'

Set up the timeseries request

tsurl = f"{url}/query/parcelTimeSeries?aoi={aoi}&year={year}&pid={pid}&tstype={t

stype}"

response = requests.get(tsurl.format(aoi, year, pid, tstype), auth = (user, pwd

))

Directly create a pandas DataFrame from the json response

This should work even if the response is and empty dictionary

df = pd.read_json(response.content)

Check for an empty dataframe

if df.empty:

 print(f"Timeseries query returned empty result for parcel {pid} and {aoi}, {

year} and {tstype}")

 sys.exit()

Convert the epoch timestamp to a datetime

df['date_part']=df['date_part'].map(lambda e: datetime.fromtimestamp(e))

Treat each band separately. Drop duplicate timestamps and rename the 'mean'

df4 = df[df['band']=='B4'][['date_part', 'mean']]

df4.drop_duplicates(['date_part'], inplace=True)

df4.rename(columns={'mean': 'B4'}, inplace=True)

df8 = df[df['band']=='B8'][['date_part', 'mean']]

df8.drop_duplicates(['date_part'], inplace=True)

df8.rename(columns={'mean': 'B8'}, inplace=True)

dfQA = df[df['band']=='SC'][['date_part', 'mean']]

dfQA.drop_duplicates(['date_part'], inplace=True)

dfQA.rename(columns={'mean': 'SC'}, inplace=True)

Merge back into one DataFrame

dff = pd.merge(df4, df8, on = 'date_part')

dff = pd.merge(dff, dfQA, on = 'date_part')

Create a NDVI

dff['ndvi'] = (dff['B8']-dff['B4'])/(dff['B8']+dff['B4'])

#print(dff)

Define the criteria for having a cloud free observation

cloudfree = ((dff['SC']>=4) & (dff['SC'] < 7))

plt.figure(figsize = (10, 6))

6/23/2021 parcel_workflow

185.178.85.219:8080/user/user/lab 3/5

plt.plot(dff['date_part'], dff['ndvi'], linestyle = ' ', marker = 'o', color =

'blue')

plt.plot(dff[cloudfree]['date_part'], dff[cloudfree]['ndvi'], linestyle = '-', m

arker = '*', color = 'red')

plt.title(f"{tstype} time series for parcel {pid} ({cropname})")

plt.xlabel('Date')

plt.ylabel('NDVI')

plt.show()

In [6]:

tstype = 'bs'

Set up the timeseries request

tsurl = f"{url}/query/parcelTimeSeries?aoi={aoi}&year={year}&pid={pid}&tstype={t

stype}"

response = requests.get(tsurl.format(aoi, year, pid, tstype), auth = (user, pwd

))

Directly create a pandas DataFrame from the json response

This should work even if the response is and empty dictionary

df = pd.read_json(response.content)

Check for an empty dataframe

if df.empty:

 print(f"Timeseries query returned empty result for parcel {pid} and {aoi}, {

year} and {tstype}")

 sys.exit()

6/23/2021 parcel_workflow

185.178.85.219:8080/user/user/lab 4/5

In [7]:

import numpy as np

df['obstime']=df['date_part'].map(lambda e: datetime.fromtimestamp(e))

dfVV = df[df['band']=='VV'][['obstime', 'mean']]

dfVV.drop_duplicates(['obstime'], inplace=True)

dfVV.rename(columns={'mean': 'VV'}, inplace=True)

dfVH = df[df['band']=='VH'][['obstime', 'mean']]

dfVH.drop_duplicates(['obstime'], inplace=True)

dfVH.rename(columns={'mean': 'VH'}, inplace=True)

Merge back into one DataFrame

dff = pd.merge(dfVV, dfVH, on = 'obstime')

Create a ratio

dff['ratio'] = dff['VH']/dff['VV']

plt.figure(figsize = (10, 6))

plt.plot(dff['obstime'], 10.0*np.log10(dff['VV']), linestyle = '-', linewidth =

0.5, marker = 'o', color = 'blue', label = 'VV')

plt.plot(dff['obstime'], 10.0*np.log10(dff['VH']), linestyle = '-', linewidth =

0.5, marker = 'x', color = 'red', label = 'VH')

#plt.plot(dff['obstime'], 10.0*np.log10(dff['ratio']), linestyle = ' ', marker =

'v', color = 'green')

plt.title(f"{tstype} time series for parcel {pid} ({cropname}, {area:.2f} ha)")

plt.xlabel('Date')

plt.ylabel('Backscattering coefficient γ_0 (dB)')

plt.xlim(pd.to_datetime('2019-01-01'), pd.to_datetime('2020-01-01'))

plt.legend()

plt.ylim(-25, 0)

plt.show()

6/23/2021 parcel_workflow

185.178.85.219:8080/user/user/lab 5/5

In [8]:

from cbm import background

aoi = 'nld' # area of interest (str)

year = 2019 # the year of the parcels dataset (int)

pid = 165238 # latitude in decimal degrees (float)

chipsize = 750 # size of the chip in pixels (int)

extend = 1500 # size of the chip in meters (float)

images from tile map servers: Google Bing (list)

tms=['Google', 'Bing', 'nl2016', 'nl2017', 'nl2018','nl2019','nl2020']

tms=['nl2017', 'nl2018', 'nl2019', 'nl2019ir']

background(aoi, year, pid, chipsize, extend, tms)

CbM git repository
Introduction of CbM git repository

GTCAP Team

The cbm code base structure, documentation
and collaboration

● git repository

● Documentation

● Jupyter Notebooks

● CbM python requirements

● The jrc ‘cbm’ Python library

● How to contribute

● Links to get started

CbM git repository

cbm python library available on
Python Package Index (PyPI)
https://pypi.org/project/cbm/
users can install cbm with:
pip install cbm

Documentation published with Sphinx, a full
featured intelligent python documentation
generator. Can be viewed at:

● https://jrc-cbm.readthedocs.io or
● https://ec-jrc.github.io/cbm/ (under development)

Docker images available
on Dockerhub:

https://hub.docker.com/u/gtcap

JRC cbm
git repository

https://github.com/ec-jrc/cbm

Technical issues
page on github

https://github.com/
ec-jrc/cbm/issues

https://pypi.org/project/cbm/
https://jrc-cbm.readthedocs.io
https://ec-jrc.github.io/cbm/
https://hub.docker.com/u/gtcap
https://github.com/ec-jrc/cbm
https://github.com/ec-jrc/cbm/issues
https://github.com/ec-jrc/cbm/issues

CbM Repository structure
This repository contains example scripts and documentation to get started with
CbM, includes:

● api/: Files to create a RESTful API for cbm
● cbm/: Python library for Checks by Monitoring (available at pypi.org)
● docker/: Docker image files
● docs/: Sphinx documentation files
● ipynb/: Jupyter Notebook examples
● scripts/: Command line scripts

○ extraction/: Extraction example scripts
○ calendar_view/: Time series calendar (Requires RESTful API server)

● tests/: Test scripts for testing a variety of functionalities.

https://github.com/ec-jrc/cbm

https://github.com/ec-jrc/cbm

CbM documentation
● INTRODUCTION:

○ DIAS for CbM
● USE CASES:

○ Calendar view
○ FOI Assessment
○ Machine learning

● SETUP:
○ Prerequisites
○ Data preparation
○ Required software
○ Parcel extraction
○ Build a RESTful API

● RESTFUL API USE:
○ Time series
○ Image chips
○ Data analytics
○ POST requests

https://jrc-cbm.readthedocs.io or
https://ec-jrc.github.io/cbm/ (under development)

https://jrc-cbm.readthedocs.io
https://ec-jrc.github.io/cbm/

CbM documentation

● CBM PACKAGE:
○ Installation
○ Configuration
○ Functions

■ DIAS catalog
■ Extraction
■ FOI examples
■ Get modules

● DEVELOPERS:
○ Contributing to CbM
○ Pull requests
○ CbM Enhancement Proposals
○ Learn

https://ec-jrc.github.io/cbm/ (under development) or
https://jrc-cbm.readthedocs.io

https://ec-jrc.github.io/cbm/
https://jrc-cbm.readthedocs.io

Contribution
We use the standard github method: create a fork, make changes and open a pull request.

*Cbm contribution suggestions: use of common naming standards, no binary files, no
hard-coded configurations, code length 80 characters, help docstring in the code

Issues and conflicts at:
https://github.com/ec-jrc/cbm/issues

https://github.com/ec-jrc/cbm/issues

Python requirements for CbM
Most important python libraries used in cbm:

● *boto3: transfer data from S3 store to local store (or directly into memory)
● *psycopg2: PostgreSQL database adapter for Python
● *requests: for making HTTP requests in Python (relevant for RESTful use)
● *rasterio: gives access to a geospatial raster file
● **gdal: translator library for raster and vector geospatial data formats

● numpy: for multi-dimensional arrays and matrices
● pandas: for manipulating numerical tables and time series
● scipy: for scientific computing and technical computing
● tflearn: deep learning library featuring a higher-level API for TensorFlow
● matplotlib: plotting library for Python
● lxml: XML parsing (to be migrated to json)
● ipyleaflet: Interactive maps in the Jupyter notebook
● ipywidgets: interactive HTML widgets for Jupyter notebooks
● voila: turn the jupyter notebook into a standalone web application

The ‘cbm’ Python package
cbm: Python library for Checks by Monitoring

Install with “pip install cbm”

● card2db: Transfer metadata from the DIAS catalog
● extraction: Parcel extraction routines
● foi: FOI module
● get: Download parcels data (time series, sentinel chip images and orthophotos)
● report: Generate reports for selected parcels (under development)
● ipycbm: Interactive notebook widgets with the subpackages:

○ ipycbm.config: Interactive configuration module
○ ipycbm.foi: Interactive FOI module
○ ipycbm.qa: Interactive QA module
○ ipycbm.extract: Interactive extraction modules
○ ipycbm.get: Interactive module for downloading data to local storage
○ ipycbm.view: Interactive module to view data (downloaded or directly from

remote location)

cbm - Configuration file
● The first time the cbm library is imported it will create the config/main.json configuration file,

if it does not exist. To edit the main configuration file manually, run in the terminal:

● To edit the configuration file interactively in a jupyter notebook:

python3 -c "import cbm"
nano config/main.json

from cbm import ipycbm
ipycbm.config()

cbm - FOI example
● FOI non interactive workflow (For version 1 you will need to set manually the

configuration file for database connection):
import cbm
vector_file = “data/parcels2020.shp”
raster_file = “data/raster.tif”
yaml_file = “pixelvalues_classes.yml”
pre_min_het = 30
pre_max_het = 70
area_threshold = 2000

cbm.foi(vector_file, raster_file, yaml_file,pre_min_het, pre_max_het, area_threshold)

● FOI with interactive python widgets in notebooks:
from cbm import ipycbm
ipycbm.foi()

ipycbm.get() ipycbm.view()

Links to get started
➔ CbM repository: https://github.com/ec-jrc/cbm
➔ CbM Documentation: https://jrc-cbm.readthedocs.io or https://ec-jrc.github.io/cbm/ (under development)
➔ CbM Python library: https://pypi.org/project/cbm
➔ CbM docker images: https://hub.docker.com/u/gtcap

Other technical information:
● Creating pull requests with an interactive way:

○ docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
● Using git guide non interactively:

○ http://rogerdudler.github.io/git-guide
● Google Python Style Guide:

○ https://google.github.io/styleguide/pyguide.html
● Markdown (.md) and reStructuredText (.rst) guides:

○ https://www.markdownguide.org, https://docutils.sourceforge.io/rst.html
● Jupyter Notebooks:

○ https://jupyter-notebook.readthedocs.io/
○ Jupyter Notebook CheatSheet: Jupyter_Notebook_CheatSheet_Edureka.pdf

● Get started with python:
○ https://python101.pythonlibrary.org/
○ https://www.programiz.com/python-programming/first-program
○ https://realpython.com/tutorials/data-viz https://python-graph-gallery.com
○ https://realpython.com/tutorials/machine-learning

https://github.com/ec-jrc/cbm
https://jrc-cbm.readthedocs.io
https://ec-jrc.github.io/cbm/
https://pypi.org/project/cbm
https://hub.docker.com/u/gtcap
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request
http://rogerdudler.github.io/git-guide
https://google.github.io/styleguide/pyguide.html
https://www.markdownguide.org
https://docutils.sourceforge.io/rst.html
https://jupyter-notebook.readthedocs.io/en/stable
https://www.edureka.co/blog/wp-content/uploads/2018/10/Jupyter_Notebook_CheatSheet_Edureka.pdf
https://python101.pythonlibrary.org/
https://www.programiz.com/python-programming/first-program
https://realpython.com/tutorials/data-viz
https://python-graph-gallery.com
https://realpython.com/tutorials/machine-learning

Q&A
guido.lemoine@ec.europa.eu
konstantinos.anastasakis@ext.ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the CC BY 4.0 license. For any use or reproduction of elements that are
not owned by the EU, permission may need to be sought directly from the respective right holders.

mailto:guido.lemoine@ec.europa.eu
mailto:konstantinos.anastasakis@ext.ec.europa.eu
https://creativecommons.org/licenses/by/4.0/

	agenda
	Cbm_Outreach_DIAStrainingI_P1
	Cbm_Outreach_DIAStrainingI_P2
	Cbm_Outreach_DIAStrainingI_P3

