

Addressing the Challenge of Redesigning a Charging System: the Case of DB Netz

Driven by changing EU Legislation DB Netz redesigned its Track Access Charges Scheme

Redesign of the Track Legislative Industry **Access Charging Concept** Consultation Changes 2012 2013/2014 2015/2016 Based on EU legislation Consultation of the new Change in European legislation (EU Directive developement of a **new** concept with the industry 2012/34) infrastructure charging Aim: Check for market concept Aim: Harmonising the **orientation** and **testing** the Basic elements: structure of **European railway** concept markets Evaluation of feedback from **■ Implementation** of EU the consultation and further legislation into national law **advancement** of the concept Mark-up to cover full costs since 02 September 2016 where required (ERegG) Further elements New regulations for **minimum** access package charges Scientific/legally grounded concept in **consultation with** the regulatory body

EU Directive 2012/34 defines common principles for infrastructure charges

Basic logic according to EU Directive 2012/34

Costs directly incurred as a result of operating the train service (marginal costs)

Each customer has to bear the costs which he directly causes

Mark-up to cover full costs according to the ability to pay of the market segment

- Remaining costs are divided among all users to maximise market demand
- The level of the mark-up it is based on the ability to pay of the market segment and shall not exclude the use of infrastructure by market segments
- Necessary to secure sufficient funds to finance the infrastructure

Further elements (incentive components of behaviour control)

Additional charges defined by the law reflecting e.g. the costs of environmental effects, scarcity of capacity, investments...

Segments in long-distance passenger traffic are based on three segmentation criteria

6 am - 8 pm*

8 pm- 11 pm**

11 pm - 6 am

Train **connects** metropolitan railway stations

Train **does not** connect metropolitan railway stations

Further segments

Charter-/Nostalgia

^{* 9} am to 8 pm at week-ends

^{** 6} am to 9 pm at week-ends

^{***} btw. 100 km/h and 160 km/h charges are based on average speed

Train Speed based charges in market segment Metro Day

Train connects metropolitan railway stations between 6 am - 8 pm, with speed based charges between. 100 km/h and 160 km/h

- Calculation of Ø-Train Speed for every section between two metropolitan railway stations
- Linear pricing between 100 and 160 km/h avoids charging ,jumps'

DB NETZE

Segments in local/suburban passenger transport had to be adapted to new national legislation - states as market segments

Requirements § 37 ERegG

- States as market segments in local passenger transport
- Average charges for local passenger transport for every state have to euqal the average charges of the corresponding traffics in the respective states in Timetable Period 2016/2017
- Outlook: Average charges per state in this market segment will rise by 1,8% p.a., starting in Timetable Period 2017/2018

Adaptation of the local passenger transport concept

- Dismissal of the former segmentation based on passenger throughput of train stations and travelling time within the market segment local passenger transport
- New: One market segment per state¹
- Determination of average charges per state according to legal requirements of § 37 ERegG

old:

new:

¹The other segment "Empty run" remains

Segmentation of freight traffic based on the nature of the traffic

Loco train

Advance performance of a load drive

Very heavy train

Train weight > 3.000 t

Conventional train

Train without dangerous goods, no heavy train

Train carrying dangerous goods

Train with dangerous goods

Local freight train

Train journey shorter than 75km AND train shorter than 370 m

For train paths in the working

timetable only

Differentiation of segments into sub-segments has been carried out in freight traffic

Loco train Local freight train Very heavy train Train carrying dangerous goods

Differentiation within the Segments

- Time flexibility
 time flexibility of end customers regarding
 path construction
- 2 Spatial flexibility
 spatial flexibility of end customers
 regarding path construction
- **Priority in dispatching**
 - Express Top Priority w.r.t. all trains (except "passenger long distance-Express")
 - Fast
 Top priority w.r.t. to all freight trains
 (except other freight -Express/Fast trains)

Conventional

train

Market Segments

Cost Bearing Ability of the Market Segments

The reaction of end customers to price changes determines segment price elasticity

Price / quantity effects

To what extent is the track demand dependent on the level of infrastructure charges?

Example

Increase of the train path charge by 10 %

By substituting the elasticities formula in the Ramsey formula it is possible to calculate the infrastructure charges

Ramsey formula

Calculation of mark-ups for each market segment

- p_i results in the Ramsey formula: $\frac{p_i DC}{p_i} = \frac{\lambda}{\epsilon_i}$ in which i indicates the respective segment
- By substituting the elasticities formula $\varepsilon_i = \varepsilon_{FC_i} * \frac{p_i}{R_i}$ in the original formula it results $p_i = DC_i + \frac{R_i}{\varepsilon_{FC_i}} * \lambda$
- **Notation**
 - DC = Direct Costs (per train path kilometer)
 - P = Track Access Charge (per train path kilometer)
 - ε_i = Price elasticity of demand for tracks
 - ε_{FC_i} = Price elasticity of final customer demand
 R = Revenue of RU(per train path kilometer)

The way in which the System works is best understood by looking at a simple (ficitional!) example

Example

Costs to be covered	5000
Lambda necessary to cover costs	-0,074

	Volume [in train km]	Direct Costs [in EUR/train km]	RU Revenue [in EUR/train km]	Price Elasticity of Customer Demand	Mark up [in EUR per Train km]	TAC [in EUR/Train km]	IM Revenue = TAC* Volume
Long Distance							
Passenger	150	1,7	30	-0,5	4,44	6,14	921
Local Passenger	650	1,2	16	-0,3	3,95	5,15	3345
Freight	250	1,8	20	-1,3	1,14	2,94	735

Challenge accepted!