SINGLE-IMPACT FICHE ORGANIC FARMING SYSTEMS

IMPACT: EUTROPHICATION

Data extracted in October 2021

Note to the reader: This fiche summarises the impact of organic systems on EUTROPHICATION¹. It is based on 2 peer-reviewed synthesis research papers², including 71 and 164 studies, respectively.

1.WEIGHT OF THE EVIDENCE

- CONSISTENCY OF THE IMPACT: The effect on EUTROPHICATION of organic farming systems, as compared to conventional systems are reported as:
 - <u>Eutrophication potential per unit of area</u>: no results were available.
 - <u>Eutrophication potential per unit of product</u>: for organic cropping systems, 2 synthesis papers reported no significant effect and one negative effect. Different results were reported for livestock/mixed farming systems, with one synthesis paper reporting negative effects and one reporting no significant effect. Uncertain* results were reported by one synthesis paper for specific categories of products (e.g. cereals, dairy products, meats, eggs), due to lack of sufficient data to perform full statistical analysis.

The 2 synthesis papers included studies conducted in Europe.

Table 1. Summary of effects of eutrophication. The numbers between parentheses indicate the number of synthesis papers with a quality score of at least 50%. Details on quality criteria can be found in the next section. Some synthesis papers reported effects for more than type of system.

	Metric		Impacts per unit of agricultural land			Impacts per unit of product			
Impact		Positive	Negative	No effect	Uncertain	Positive	Negative	No effect	Uncertain
		Organic cı	opping sy	stems					
Decrease Eutro					0	1(1)	2 (2)	1(1)	
		Organic liv	/estock sy	stems					
Decrease Eutrophication						0	1 (1)	1(1)	1 (1)

¹ Eutrophication potential per unit of product (a measure of nutrification) is reported in PO4 equivalents and includes eutrophication potential from phosphate, nitrogen oxides, ammonia, and ammonium, among others. Eutrophication is a measurement of the increase in nutrients entering an ecosystem. Eutrophication has substantial environmental impacts including, but not limited to, algal blooms and aquatic dead zones. Emissions are accounted for all 'cradle-to-farm gate' activities (Clark and Tilman, 2017, 10.1088/1748-9326/aa6cd5).

² Research synthesis papers include a formal meta-analysis or systematic reviews with some quantitative results. Details can be found in the methodology section of the WIKI.

QUALITY OF THE SYNTHESIS PAPERS: The quality score summarises 16 criteria assessing the quality of three main aspects of the synthesis papers: 1) the literature search strategy and studies selection; 2) the statistical analysis; 3) the potential bias. Details on quality criteria can be found in the methodology section of this WIKI.

2. IMPACTS

The main characteristics and results of the 2 synthesis papers¹ are summarized in **Table 2**. Summaries of the meta-analyses provide fuller information about the results reported in each synthesis paper, in particular about the modulation of effects by factors related to soil, climate and management practices.

Reference	Population	Geographic al scale	Num. papers	Intervention	Comparator	Metric	Conclusion	Qualit y score
Clark, M; Tilman, D. 2017	LCA studies assessing the performance of organic systems in comparison to conventiona l systems. Emissions are accounted for all 'cradle-to- farm gate' activities.	Global. *	164	Organic Cereals, Organic pulses and oil crops, Organic fruits, Organic Vegetables, Organic meats, Organic dairy products and eggs	Conventiona I systems	Eutrophication potential per unit of product (a measure of nutrification) is reported in PO4 equivalents and includes eutrophication potential from phosphate, nitrogen oxides, ammonia, and ammonium, among others. Eutrophication is a measurement of the increase in nutrients entering an ecosystem. Eutrophication has substantial environmental impacts including, but not limited to, algal blooms and aquatic dead zones. Emissions are accounted for all 'cradle-to-farm gate' activities.	Organic systems (all types as average) showed 37% higher (p = .0383; n = 20) eutrophication potential per unit of product than conventional systems. For organic cereals, vegetables and meats eutrophication potentials per unit product resulted significantly higher, as compared to conventional products. For organic pulses, oil crops, dairy products and eggs, eutrophication potential per unit product resulted in no significant change, as compared to conventional products.	62%
Tuomisto HL; Hodge ID; Riordana P; Macdonal d DW 2012	Field studies, modelling studies and Life Cycle Assessment studies assessing the performance of organic systems in comparison to conventiona I systems in	Europe	71	Organic production of milk, cereals, beef, pork	Conventiona I systems	Eutrophication potential per unit of product (LCA approach)	There is not a single organic or conventional farming system, but a range of different systems, and thus, the level of many environmental impacts depend more on farmers' management choices than on the general farming systems.	69%

 Table 2. Main characteristics of the synthesis papers reporting impacts on eutrophication.

Europe.

*In Clark and Tilman (2017), the majority of LCA publications included are from agricultural systems in Europe, North America, and Australia and New Zealand (86% of systems are from these regions). Systems from China (2%), Japan (2%), the rest of Asia (5%), South America (4%), and Africa (.4%) are much less common. The results presented here are therefore indicative of highly industrialized systems and should be interpreted with this in mind.

3. KNOWLEDGE GAPS

The authors did not report knowledge gaps in the reviewed synthesis papers.