Using binary data serialization
for data storage and sharing

Peter Mooney (IE)

Bl oo

EXPERT CONTRACT
CONTRACT NUMBER - CT-EX2014D166355-104

Internet-based (Geo)data storage and
sharing requirements are growing every day

#<i- 01 -
=9

Al ~
(loud Storage

&>

Retrieve

Store

oo: §

https://my-ecoach.com/online/resources/12617/GhabenK_represe

N N
1 b | e |1
\ VNl ==
\ 2| =
\®k 1y |

% | Nearly 90% of developers use APIs
= | % of developers (Q3 2020 n=15,299)

Share

ntative.png

Private /
internal
APIs only

20%

Third-party APIs
69%

rvey 19th edition / DATA

Source: SlashData Developer Econoimics sl

https://sdk.finance/wp-content/uploads/2018/11/api-in-business.png

https://sdk.finance/wp-content/uploads/2018/11/api-in-business.png
https://my-ecoach.com/online/resources/12617/GhabenK_representative.png

“The best time to plant a tree is yesterday,
the next best time is today”

“For the development of many products and services, data needs
to be widely and easily available, easily accessible, and simple to
use and process. Data has become a key factor of production, and
the value it creates has to be shared back with the entire society

participating in providing the data. This is why we need to build a
genuine European single market for data - a European data space
based on European rules and values.”

“In order to open up key public sector
reference data sets for innovation, it shall
start the procedure for the adoption of an
Implementing act on high-value data sets Common European data spaces
(Q1 2021) under the Open Data Directive,

making these data sets available across I et 2
the EU for free, in machine-readable S @@ n% @ ﬁ @ %

Free flow of data

format and through standardised B Bl e el e el el el el e
Application Programming Interfaces (APIS)

Full respect of GDPR

[{]

-
[—=Technical tools for data pooling and sharing — Sectoral Data Governance (contracts,
—Standards & interoperability (technical, licenses, access rights, usage rights)

Horizontal semantic) — IT capacity, including cloud storage,

European strategy for data COM/2020/66 sotnanes st | W processing and services p

cccccc

Generally, most APIs available today expose
services providing XML, JSON, GeoJSON, CSV, etc.

- Advantages - Disadvantages

- Almost universal client tool
support (programming
languages, GIS, mobile, etc)

- Interoperable (and open

- Poor performance on
larger data sizes

- Typing: Does not always

data formats) impose strict ‘typing’

- Human readable - Scales poorly over time
- Works very effectively for and space (data sizes)

small data sizes - Not necessarily suitable
- JSON = ‘de-facto’ standard for cloud infrastructures

Typical, popular, use-case
scenario for API (geodata)

 Server

- Recieves request

- Prepares response

e Client tools

Load response

- Send response (JSON, XML, - Extract or Transform
csv, SHP, etc) - Process: Visualise,

analyse, integrate, etc.

T —

(Geo)data SERVER - with API

*

CLIENT(S) - with software

mlﬁ

(P

——

As responses scale the use of popular data
formats can introduce many obstacles

e Server

 Client tools

- Preparation of complex
- Delayed response

responses (query times)
] . - Loading large responses
- High traffic, network

bandwidth (uncontrollable)

- Long times: Extracting,
transforming, processing
large responses

CLIENT(S) - with software
(Geo)data SERVER - with API

Binary data serialization - LOTS

of options to ch

#3 protobuf 8

Protocol Buffers

SRE

FlatBuffers

Apache Avro

e

Apac‘\' ST f,

yys

nfo r throws (1:ServerInfoExceptian e); for (StackTr:

oose from

Experimental setup {
and focus AN\~ /)

)

» Not just “time vrs space” analysis of binary vrs
JSON/XML serialization approaches

* Focus on interoperability, usability, scalability
« Open source, open approaches

* Investigate conditions where binary serialization
could replace or compliment the ‘de-factor’
standards (JSON, XML, and so on...)

* Google Protocol Buffers, Apache Avro

.'; protobuf

Protocol Buffers

=R

Apache Avro

Experimental setup - Data (1)

« Experiment 1 « Experiment 2

- A “large” static GIS - An API (OGC Sensor
dataset - br. Alessandro Things API) - br. simon
Sarretta’s project Jirka’s project

- POINT Geometry - POINT Geometry

- NLS Finland + - Aeroplane tracking
UpenstreetMap - 20,000 features
addresses

- JSON response
- 1.9M features
- GPKG file

Experimental setup - Data (2)

. Experiment 1 - Experiment 1a
- A “large” static GIS - A static GIS dataset - or.
Alessandro Sarretta’s project

dataset - br. Alessandro
Sarretta’s project - POINT Geometry

- POINT Geometry - Randomly generated

: data (same attribute names

- NLS Finland + and types as original)
OpenstreetMap - 20,000 features
addresses

- GPKG file

- 1.9M features - For reproducibility
~ GPKG file purposes

Experimental Setup (Software)

https://github.com/petermooney/jrc_binarydata

q (i A & github.com/petermooney/jrc_binarydata P

H petermooney/jrc_binarydata Pubiic ®uUnwatch ~ 1 3

<> Code () Issues i Pull requests () Actions [T Projects 00 Wiki p | lt h O n ™

¥ main - Go to file Add file ~

@ petermooney Added copies of the original experimental 8 days ago %) 18
experimentl Added copies of the original experimental ... 8 days ago SOftwa re Setu p
experiment2 Added copies of the original experimental ... 8 days ago ® FU I Iy I’e p rOd U CI b I e COd e
Y LICENSE.md Initial commit 17 days ago (G ItHU b)
[README.md Added copies of the original experimental ... 8 days ago ° N (@) “ h acC kS o
« Use open source and widely
:= README.md Va

supported Python libraries
This is the readme file for Experiment 1 and onIy

E] t2
xperimen Interoperable

The Python code contained here was originally written in Python 3.8.10 on
Ubuntu 20.04.3 LTS (focal) x86 64 (64 bit). The laptop computer was a
DELL Inspiron 5567 with 16Gb memory and Intel Core(TM) i7-7500U CPU
@ 2.70G processor.

https://github.com/petermooney/jrc_binarydata

Experiment 1 - Binary schemas

Original GPKG

"FinlandAddresses
"FI_Addresses",

"name" :
"namespace"

Layer Properties — original-dataset-experiment1 test-geopackage — Fields

"type": "record"

"fields": [g
{"name": "addrHousenumber", "type": ["string","null"]}, d - Name Alias Type Typename Length Precision Comment
{"name": "addrStreet", "type": ["string","null"]}, 0o fid glonglong Integer64 4 g
{"name": "addrCity", "type" : ["string","null"]1}, anc 1 | addr:housenumber Qstring String 0 0
{"name": "fid", "type": "int"}, abe 2 addristreet Qstring String 0 0
{"name": "sour ce" "type": ["st rlng ", "null"]}, w3 |addrcountry Qstring String 0 0
{"name": "addruUnit", "type": ["string","null"l},
{"name": "fullAddress", "type": ["string","null"]}, 4 addrcty e e = C
{"name": "geometry", "type": ["string","null"]} abe 5 source Qstring string 0 0

fullAddress QString String 0

syntax = "proto2";

Protocol tocol buffer compiler. DO NOT EDIT!
package AddressFI; - BN .
BUﬂ:erS """Generated protocol huffer code """
from google.protobuf import descriptor as descriptor
message Address pro _ ‘ -

J_ .—F By out Python Class from google.protobuf import message as message
required string addrHousenumber = 1;) from google.protobuf import reflection as reflection
required string addrStreet = 2; _java_out Ffron google.protobuf import symbol database as symbol database
a ired str idrCit 3 ‘ S Clss otoc_insertion point(imports)
required string addrCity = 3; Protoc | prorocel |

: 2|
required int32 fid = 4; Compiler | _¢ "
re cjui el e e / PPN By iElass _sym db = symbol database.Default()
- . s r - .)
required string addrUnit = i 22 out —
required string fullAddress Go Class

required
}
message Address {
repeated Address prop address

}

string geometry =

DESCRIPTOR =
name="'address.proto
package='AddressFI',
syntax="'proto2',

_descriptor.FileDescriptor(

Experiment 2 - Binary schemas

Original API response

"name": "Experiment2", {
"namespace": "Experiment2STA", Svaltuelt N |
"type": "record”, "@iot.id": "00EOb162-4d9b-4727-b148-706f5d25219a",
"fields": ["@iot.selfLink": "https://jrc.dev.52north.org/vl.1/Locations(0000b162-4d9b-4727-
"name": "Location of 400663"
"description": "Somewhere in the sky",
"encodingType": "application/vnd.geo+json",
"location": {
Ityper : tPointt;
"coordinates": [7.01165, 51.66806],

{"name": "name", "type": "string"},
{"name": "iotid", "type": "string"},
{"name": "description", “type": "string"},
{"name": "iotselfLink", "type": "string"},
{"name": "things iot navigationLink", "type": "string"}, rers': {
{"name": "historical locations iot navigationLink", "type": "string"}, “type": "name"
{"name!: "longitude¥, "type®: "float"}, "properties”: {
{"name": "latitude", "type": "float"} "name": "EPSG:4326"
i

¥
=
"Things@iot.navigationLink": "https://jrc.dev.52north.org/vl.1/Locations (Q00Pb16
"HistoricalLocations@iot.navigationLink": "https://jrc.dev.52north.org/v1.1/Loca

oA

syntax = "proto2";

package Experiment2Data;
- coding: utf-8 --

Generated by the protocol buffer compiler. DO NOT EDIT!
message Experiment2 prop { # source: experiment2.proto

required string name = 1; o“/o\)‘ Python Class """Generated protocol buffer code."""
required float latitude = 2- y’ from google.protobuf import descriptor as descriptor

from google.protobuf import message as message

¥
. : = out
required float longitude = 3; : i Java Class from google.protobuf import reflection as reflection
required string iotid = 4; protoc Protocol ‘ from google.protobuf import symbol database as symbol database

: ; : : Compiler | __ # @@protoc_insertion point(imports)
required string iotselfLink = 5;) ok ‘ F
required string description = 6; - _sym db = symbol database.Default()

required string historicallLink = 7; .
. , , _ :
required string thingsLink = 8; Go Class

} DESCRIPTOR = descriptor.FileDescriptor(
name='experiment2.proto’',

package='Experiment2Data’,
repeated Experiment2 prop experiment2 = 1; syntax='proto2’

}_ serialized options=None,

message Experiment2lLocations {

Results - Experiment 1

Action Time (seconds) File Size (Mb)

Convert GPKG to GeoJSON using Pandas | 327s, std-dev 11.3s 288Mb (GPKG file)
{gpd .read file() and gpd .to file ()) 614Mb* (GeoJSON ﬁlE‘]

Load GeoJSON into Python using GeoPandas | 81s, std-dev 3.25 614Mb*
gpd.read file()

GeoJSON - Apache Avro (Serialize) 301s, std-dev 3.4s 228Mb
GeoJSON - Protocol Buffers PBF (Serialize) 306s, std-dev 29s 235Mb
Protocol Buffers PBF - GeoJSON (Deserialize) 378s, std-dev 2.8s 542Mb

Apache Avro - GeoJSON (Deserialize) 389s, std-dev 3.1s 546Mb

Results - Experiment 1a

Action

Time (seconds)

File Size (Mb)

Convert GPKG to GeolJSON using Pandas
(gpd.read_file() and gpd.to_file())

3.41s, std-dev 0.03s

5.1Mb (GPKG file)
8.1Mb (GeoJSON file)

Load GeoJSON into Python using GeoPandas | 0.85s, std-dev 0.32s 8.1Mb*
gpd.read file()

GeoJSON — Apache Avro (Serialize) 3.17s, std-dev 0.05s |3.8Mb
GeoJSON - Protocol Buffers PBF (Serialize) 3.19s, std-dev 0.04s 3.8Mb
Protocol Buffers PBF - GeoJSON (Deserialize) 3.87s, std-dev 0.05s 6.9Mb
Apache Avro - GeoJSON (Deserialize) 3.98s, std-dev 0.03s 6.9Mb

Results - Experiment 2

Action Time (seconds) File Size (Mb)
JSON API response data download variable 12.9Mb

JSON - GeoJSON 1.23s, std-dev 0.07s 11.5Mb*
JSON - Apache Avro (Serialize) 0.34s, std-dev 0.04s 7.0Mb

JSON - Protocol Buffers PBF (Serialize) 0.32s, std-dev 0.04s 7.1Mb
Protocol Buffers PBF - GeoJSON (Deserialize) 1.14s, std-dev 0.07s 11.5Mb
Apache Avro - GeoJSON (Deserialize) 1.10s, std-dev 0.03s 11.5Mb

* Note that the encodingType and crs fields are not implemented from the original JSON respons dataset.

Results Discussion (time, space)

« Expl Binary files 20% smaller than GPKG, 63% smaller
than GeoJSON

« Expla Binary files 26% smaller than GPKG, 54% smaller
than GeoJSON

Exp2 Binary files 40% smaller than GeoJSON

Expl - no major timing differences observed
Expla - similiar to Exp1, no significant differences

Exp2 - Serialisation to Binary 3.6 times faster than
serialization to GeoJSON

Results Djscussien - Practicalities

 Binary files - schemas always required for (de)-
serialization (+PROTOC class for Protobuf)

« Apache Avro - no class compilation required

 Binary files will require specialist code generation for
query/search - many libraries provide this for JSON,
GeoJSON, XML, etc...

* Vendor lock-in avoided, good programming language
support overall - specialist knowledge required

« Schemas will require updates if underlying data models
change. This could be problematic.

Real world Example: OpenStreetMap -
dissemination of data in PBF format

e A & imposm.org/docs/imposm.parser/latest/
»
4 & A @ download.geofabrik.de/europe/italy.html
Download OpenStreetMap data for this region: imposm.parser - OpenStreetMap XML/PBF parser for Python
imposm.parser is a Python library that parses OpenStreetMap data in XML and PEF format.

[one level up] It has a simple AP and it is fast and easy to use. It also works across multiple CPU/cores for extra speed.
The OpensStreetMap data files provided on this server do not contain the user names, user IDs and changeset IDs of th It is developed and supported by Omniscale and released under the Apache Software License 2.0,
objects becagse these fields are. assumed _to co_mam personal |nfor_mat\0n about the OpenStreetMap contributors and & q cn @ osmcode.org/libosmium/ T A & =
therefore subject to data protection regulations in the European Union.
Extracts with full metadata are available to OpenStreetMap contributors only. I HOME | STATUS | DOCUMENTATION | CONTACT | €) CODE

Commonly Used Formats

Osmium Library

st.osm.pbf, suitable for Osmium, Osmosis, imposm, osm2pgsql, mkgmap, and others. This file was last modified 8

- italy

hours ago and contains all OSM data up to 2021-10-05T20:21:28Z. File size: 1.6 GB; MD5 sum: Afast and flexible C++ library for working with OpenStreetMap data

228376444 4e0c85139b41.
« falylatestfreeshp-2ip is not available for this region; try one of the sub-regions. Features

o q The Osmium Library has extensive support for all types of OSM entities: nodes, ways, relations, and

Other Formats and AUXIlIaW Files changesets. It allows reading from and writing to OSM files in XML and PBF formats, including change
« italy-latest.osm.bz2, yields OSM XML when decompressed; use for programs that cannot process the .pbf format. This file files and full history files. Osmium can store OSM data in memory and on disk in various formats and

was last modified 3 hours ago. File size: 2.7 GB; MD5 sum: ¢ £333708d458. 6e2684fd4. using various indexes. Its easy to use handler interface allows you to quickly write data filtering and
+ ialyinternakesh-pbf The history file contains personal data and is available on the internal serv Dn\)ﬁ & wiki.openstreetmap.org/wiki/PBF_Form conversion functions. Osmium can create WKT, WKB, OGR, GEOS and GeoJSON geometries for

for further information. easy conversion into many GIS formats and it can assemble multipolygons from ways and relations.

message Way {
required int64 id = 1;
// Parallel arrays.

truel;

Sub Regins seilin g v,
Click on the region name to see the overview page for that region, or select one of the file extension linksfl P - Eacker = Erue] ;
Sub Region Quick Links optional Info info = 4;
.osm.pbf .shp.zip .0sm.hz2
Centro [.osm.pbi] (266 MB) .shp.zip] [.osm.bz2] repeated sint64 refs = 8 [packed = truel; // DELTA coded
Isole [.osm.pbf] (147 MB) [.shp.zip] [.0sm.bz2]
Nord-Est [.osm.pbf] (493 MB) [.shp.zip] [Losm.hz2] // The following two fields are optional. They are only used in a special
Mord-Ovest [.osm.pbf] (433 MB) [.shp.zip] [.osm.bz2] // format where node locations are also added to the ways. This makes the
Sud [.osm.pbi] (264 MB) |.shp.zip] .0sm.bz2 ;’i files larger, but allows creating way geometries directly.

// If this is used, you MUST set the optional features tag "LocationsOnWays'
// and the number of values in refs, lat, and lon MUST be the same.

repeated sint64 lat = 9 [packed = truel; // DELTA coded, optional

repeated sint64 lon = 10 [packed = truel; // DELTA coded, optional

Final thoughts

It still remains a challenge to measure and understand
“success” in regards to the possible replacement of
existing ‘de-facto’ standards with binary data
serialization

Obvious and quantifiable performance advantages with
binary data serialization

However, overheads remains which could impede wider
adoption include - schema updating, specialist
knowledge, small worldwide user community, etc.

More spatial or location-data specific experimentation
required in future work.

European

Commission
.]

With many thanks for watching
and listening

Peter Mooney (IE)
Email: peter.mooney@mu.ie

European Commission
_Joint Research Center

~ JRC/BIO6

EXPERT CONTRACT
CONTRACT NUMBER - CT-EX2014D166355-104

mailto:peter.mooney@mu.ie

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

