

Using binary data serialization
for data storage and sharing

Peter Mooney (IE)

Internet-based (Geo)data storage and
sharing requirements are growing every day

https://sdk.finance/wp-content/uploads/2018/11/api-in-business.png https://my-ecoach.com/online/resources/12617/GhabenK_representative.png

https://sdk.finance/wp-content/uploads/2018/11/api-in-business.png
https://my-ecoach.com/online/resources/12617/GhabenK_representative.png

“The best time to plant a tree is yesterday,
the next best time is today”

“For the development of many products and services, data needs
to be widely and easily available, easily accessible, and simple to
use and process. Data has become a key factor of production, and
the value it creates has to be shared back with the entire society
participating in providing the data. This is why we need to build a
genuine European single market for data - a European data space
based on European rules and values.”

“In order to open up key public sector
reference data sets for innovation, it shall
start the procedure for the adoption of an
Implementing act on high-value data sets
(Q1 2021) under the Open Data Directive,
making these data sets available across
the EU for free, in machine-readable
format and through standardised
Application Programming Interfaces (APIs)
“

European strategy for data COM/2020/66

Generally, most APIs available today expose
services providing XML, JSON, GeoJSON, CSV, etc.

● Advantages
– Almost universal client tool

support (programming
languages, GIS, mobile, etc)

– Interoperable (and open
data formats)

– Human readable
– Works very effectively for

small data sizes
– JSON = ‘de-facto’ standard

● Disadvantages
– Poor performance on

larger data sizes
– Typing: Does not always

impose strict ‘typing’
– Scales poorly over time

and space (data sizes)
– Not necessarily suitable

for cloud infrastructures

Typical, popular, use-case
scenario for API (geodata)

● Client tools
– Load response
– Extract or Transform
– Process: Visualise,

analyse, integrate, etc.

(Geo)data SERVER – with API
CLIENT(S) – with software

REQUEST

RESPONSE

● Server
– Recieves request
– Prepares response
– Send response (JSON, XML,

csv, SHP, etc)

As responses scale the use of popular data
formats can introduce many obstacles

● Client tools
– Delayed response
– Loading large responses
– Long times: Extracting,

transforming, processing
large responses

(Geo)data SERVER – with API
CLIENT(S) – with software

REQUEST

RESPONSE

● Server
– Preparation of complex

responses (query times)
– High traffic, network

bandwidth (uncontrollable)

Binary data serialization – LOTS
of options to choose from

Experimental setup
and focus

● Not just “time vrs space” analysis of binary vrs
JSON/XML serialization approaches

● Focus on interoperability, usability, scalability
● Open source, open approaches
● Investigate conditions where binary serialization

could replace or compliment the ‘de-factor’
standards (JSON, XML, and so on...)

● Google Protocol Buffers, Apache Avro

Experimental setup – Data (1)

● Experiment 1
– A “large” static GIS

dataset – Dr. Alessandro
Sarretta’s project

– POINT Geometry
– NLS Finland +

OpenStreetMap
addresses

– 1.9M features
– GPKG file

● Experiment 2
– An API (OGC Sensor

Things API) – Dr. Simon
Jirka’s project

– POINT Geometry
– Aeroplane tracking
– 20,000 features
– JSON response

Experimental setup – Data (2)

● Experiment 1
– A “large” static GIS

dataset – Dr. Alessandro
Sarretta’s project

– POINT Geometry
– NLS Finland +

OpenStreetMap
addresses

– 1.9M features
– GPKG file

● Experiment 1a
– A static GIS dataset – Dr.

Alessandro Sarretta’s project

– POINT Geometry
– Randomly generated

data (same attribute names
and types as original)

– 20,000 features
– GPKG file
– For reproducibility

purposes

Experimental Setup (Software)
https://github.com/petermooney/jrc_binarydata

Software setup
● Fully reproducible code

(GitHub)
● No “hacks”
● Use open source and widely

supported Python libraries
only

● Interoperable

https://github.com/petermooney/jrc_binarydata

Experiment 1 – Binary schemas
Original GPKG

Experiment 2 – Binary schemas
Original API response

Results – Experiment 1

Results – Experiment 1a

Results – Experiment 2

Results Discussion (time, space)

● Exp1 – no major timing differences observed
● Exp1a – similiar to Exp1, no significant differences
● Exp2 – Serialisation to Binary 3.6 times faster than

serialization to GeoJSON

● Exp1 Binary files 20% smaller than GPKG, 63% smaller
than GeoJSON

● Exp1a Binary files 26% smaller than GPKG, 54% smaller
than GeoJSON

● Exp2 Binary files 40% smaller than GeoJSON

Results Discussion - Practicalities

● Binary files – schemas always required for (de)-
serialization (+PROTOC class for Protobuf)

● Apache Avro – no class compilation required
● Binary files will require specialist code generation for

query/search – many libraries provide this for JSON,
GeoJSON, XML, etc...

● Vendor lock-in avoided, good programming language
support overall – specialist knowledge required

● Schemas will require updates if underlying data models
change. This could be problematic.

Real world Example: OpenStreetMap –
dissemination of data in PBF format

Final thoughts
● It still remains a challenge to measure and understand

“success” in regards to the possible replacement of
existing ‘de-facto’ standards with binary data
serialization

● Obvious and quantifiable performance advantages with
binary data serialization

● However, overheads remains which could impede wider
adoption include – schema updating, specialist
knowledge, small worldwide user community, etc.

● More spatial or location-data specific experimentation
required in future work.

With many thanks for watching
and listening

Peter Mooney (IE)
Email: peter.mooney@mu.ie

mailto:peter.mooney@mu.ie

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

